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Abstract— Numerical weather predictions have been widely used for weather forecasting. Many large meteorological centers are
producing highly accurate ensemble forecasts routinely to provide effective weather forecast services. However, biases frequently
exist in forecast products because of various reasons, such as the imperfection of the weather forecast models. Failure to identify
and neutralize the biases would result in unreliable forecast products that might mislead analysts; consequently, unreliable weather
predictions are produced. The analog method has been commonly used to overcome the biases. Nevertheless, this method has
some serious limitations including the difficulty in finding effective similar past forecasts, the large search space for proper parameters
and the lack of support for interactive, real-time analysis. In this study, we develop a visual analytics system based on a novel voting
framework to circumvent the problems. The framework adopts the idea of majority voting to combine judiciously the different variants
of analog methods towards effective retrieval of the proper analogs for calibration. The system seamlessly integrates the analog
methods into an interactive visualization pipeline with a set of coordinated views that characterizes the different methods. Instant
visual hints are interactively provided in the views to guide users in finding and refining analogs. We have worked closely with the
domain experts in the meteorological research to design and develop the system. The effectiveness of the system is demonstrated
using two case studies. An informal evaluation with the experts proves the usability and usefulness of the system.

Index Terms—Weather forecast, analog method, calibration, majority voting, visual analytics

1 INTRODUCTION

Numerical weather prediction (NWP) has been practiced operationally
at many forecast centers since the middle of the 20th century. Since the
mid-1990s, many centers have also been producing ensembles of fore-
casts [19]. Multiple simulations of the future weather are created from
slightly perturbed initial states to simulate the uncertainty contributed
by imperfections in the forecast model itself. Given the chaotic nature
of the atmosphere [20], even small initial differences increase rapidly
with time; thus, probabilistic forecasts of future states are more the-
oretically tenable than deterministic forecasts for domain experts [2].
Despite the rapid progress in the development of NWP, problems still
exist. The forecasts may be systematically too warm or too cold, too
wet or too dry. Meanwhile, it is a common occurrence to have en-
sembles of forecasts that have too little spread, and the true state lies
outside the ensemble range. Calibrating the forecasts and addressing
these deficiencies to improve the forecasts is a crucial concern.

Many meteorological groups are exploring the “post-processing”
methods for ensemble forecast. Of particular interest is the use of
analog methods, which have shown promising results [9] and have
been used to generate forecast products. The idea of the method is to
find past forecasts (i.e., analogs) in a geographically limited region that
resemble the current forecast. A probabilistic estimate of the weather
is then formed from the observed data at the time of the past forecasts.
However, different similarity measures can be used to find the similar
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past forecasts and none of them is regarded perfect [9]. An intuitive
solution is to combine different measures to derive a comprehensive
measure. Nevertheless, no effective solution has been proposed to deal
with the threshold problem in the analog methods.

Inspired by the majority voting method commonly used in machine
learning [35], we propose a novel user-steered voting framework to
combine and refine the analogs obtained using three widely used ana-
log methods. The framework consists of three interactive, coordinated
views, each of which corresponds to one analog method. Through
interactions on the coordinated views, users cast their votes for differ-
ent analogs. A two-step solution is proposed to address the threshold
problem of the analog methods as well as ensure the reliability of the
final forecasts. Based on the framework, we work closely with the do-
main experts to develop a visual analytics system that empowers the
experts to calibrate the forecasts effectively. Two case studies and user
evaluations demonstrate the effectiveness and usability of the system.

The main contributions of this paper are as follows:
• A characterization of the calibration problem in the operational

weather forecasting.
• A novel voting framework that effectively combines different

analog-based methods using three coordinated visualizations.
• A visual analytics system based on the voting framework that as-

sists forecasters in weather forecasting using the analog method.

2 RELATED WORK

Meteorological Data Visualization Meteorological data visual-
ization has become an important topic in the visualization since tens
of years ago [13, 33]. Many practical visualization tools have been
developed to support domain research, such as Vis5D [12], Ferret [10]
and GRADS [1]. However, a gap still exists between the advanced
visualizations and domain work in climate research [23, 32].

Several visual analytics systems have been developed through close
collaborations with meteorologists. Kehrer et al. [17, 18] have pro-
posed a novel visualization pipeline to support hypothesis generation
from large scale climate data. To visualize climate variability changes,
Janicke et al. [16] have used the wavelet analysis to perform the multi-
scale visualization. Lundblad et al. [21] have developed an application
to identify significant trends and patterns within weather data using in-
teractive information visualization techniques. Doraiswamy et al. [3]
have presented a framework for the identification and tracking of cloud
systems by combing automatic techniques from computational topol-
ogy and computer vision and interactive visualization. These works
assist the domain experts in understanding the atmospheric state and



contribute to many practical applications. However, there is little vi-
sualization work which supports the weather forecast calibration.

Uncertainty Visualization for Meteorological Ensemble Data
Many researchers have contributed to the issue of uncertainty visual-
ization for meteorological data. MacEachren et al. [22] have provided
a detailed introduction to the visualization of geo-spatial information
uncertainty. Pang et al. [24] have done a lot of research on geo-spatial
data visualization. To reveal the probabilistic nature of the data, Potter
et al. [28] have described a framework that visualizes the numerical
weather ensemble data with linked views. Sanyal et al. [30] have de-
signed an informative ribbon and glyphs to visualize the uncertainty
in multiple numerical weather model. Pöthkow et al. [27] measure
the positional uncertainty of isocontours with the isocontour density
and the level crossing probability field. Pfaffelmoser et al. [25] have
provided a color mapping and glyph based visualization solution for
visualizing the variability of gradients in 2D scalar fields. Using the
Lagrangian-based distance metric, Guo et al. [7] have evaluated and
visualized the variation that exists in ensemble runs. Poco et al. [26]
have proposed an iterative visual reconciliation solution for similarity
spaces in climate model research. Whitaker et al. [34] have introduced
the contour boxplots to visualize and explore the contours in ensemble
fields. Recently, Höllt et al. [14] have provided a framework for data
analysis of ocean forecast ensembles based on GPU implementation.

However, most of the visualization work have not discussed about
the consistency between the ensemble data and the observed data,
which is one of the domain experts’ main concerns in the weather fore-
casting. Moreover, the previous methods cannot be directly applied to
visualize the large scale historical data. Therefore, we develop a sys-
tem based on the analog methods and the probabilistic map to explore
the data as well as assist the domain experts in the calibration.

Calibration in Meteorological Research Weather forecast cal-
ibration is one of the most important problems in meteorological re-
search. Many methods have been proposed to address the problem.
Glahn et al. [4] have used the linear regression, which is also known as
”Model Output Statistics”, to calibrate the forecast. Raftery et al. [29]
have used Bayesian model averaging to calibrate forecast ensembles.
Gneiting et al. [5] have detailedly discussed the probabilistic forecast
and the calibration. Although these methods have demonstrated use-
fulness, they all lack interactive tools which can effectively integrate
domain knowledge into the statistical processes. Therefore, we try to
provide an interactive visual analysis system to support one of them.

3 DOMAIN TASKS AND DATASET DESCRIPTION

This section briefly discusses the domain tasks and describes the data
used in our system.

3.1 Domain Tasks
Three main tasks in forecast calibration have been identified through
close collaboration with a group of forecasters, observations on their
routine work, and detailed discussions about their working flow.

T1 Generating Initial Forecast An initial forecast is produced us-
ing a post-processing method, such as the analog method. This
forecast serves as a basis for the subsequent calibration process.

T2 Detecting Regions of Interest (ROI) The initial forecast derived
after the post-processing step could have biases. Thus, forecast-
ers need to detect ROIs where biases exist.

T3 Applying Detailed Calibrations Calibrations are applied to the
detected ROIs statistically or manually according to professional
knowledge of the experts regarding the current weather state.

3.2 Dataset Description
The reforecast data and the observed data are used in this study.

Reforecast Data The reforecasts are from the US NCEP Global
Ensemble Forecast System (GEFS). The GEFS reforecasts are grid
data with a resolution of ∼ 0.5◦. They comprise an 11-member en-
semble of forecasts which run every day. The reforecasts span from
1985 to present. A variety of forecast variables are produced. Detailed
descriptions of the reforecasts can be found in [8].

Observed Data The observed data are the NCEP Climatology-
Calibrated Precipitation Analysis (CCPA) data. The CCPA data are
grid data with a resolution of 0.125◦. The data spans from 2002 to
present and covers the continental US. The analysis data are saved ev-
ery 6 hours. In practical usages, the analysis data are regarded as the
ground truth description of the real weather state. Detailed descrip-
tions of the CCPA data can be found in [15].

4 VISUAL VOTING FRAMEWORK

In this section, we introduce a set of analog methods, and then present
the visual voting framework used to combine the methods and support
the weather forecast calibration, which is the task of T3.

4.1 Analog Methods

The analog method has two successive main steps: the step of analog
retrieval and the step of probabilistic forecast generation. The analog
retrieval step is designed to find the past forecasts with similar data in
the ROI. The difference between the current forecast and the past one
is defined as the root mean square (RMS) difference of a variable or the
weighted sum of the RMS differences (aggregated RMS differences)
of several variables. Meanwhile, the mean of the ensemble forecasts
is used for the calculation of variable RMS differences. Thereafter,
N analogs with the smallest differences or the analogs that satisfy a
specified threshold constraint are selected. The probability distribution
of the observed data from the corresponding dates of the analogs is
used to provide an estimate of the event probability. More details about
the method can be found in [9].

The analog method has many potential variants with different ROI
sizes and difference norms (a blend match of several forecast variables
or an independent variable). In our system, three widely used variants
of the analog method are selected, including global to local measure-
ments for the similarity.
C1 RMS Difference of Aggregated Variables in a Large Region

In most cases, a meteorological event covers a relatively large re-
gion. Therefore, the aggregated RMS difference in a large region
is adopted to ensure that the selected dates share a similar global
atmospheric state with the current date.

C2 RMS Difference of Aggregated Variables in a Small Region
The measure quantifies the aggregated RMS difference in a small
local region. In this study, a small region is the smallest grid cell
with four grid points in the corners. This measure is one of the
most straightforward measures and is mostly used in the practice.

C3 RMS Difference of Separate Variables in a Small Region
Compared with C2, the measure provides a detailed description
of each variable. A particular variable could be much more sig-
nificant in some scenarios for the calibration.

The variants retrieve analogs from different meaningful perspectives,
but these may lead to rather diverse probabilistic forecasts when em-
ploying different thresholds.

4.2 Visual Voting

Majority voting is one of the most fundamental and popular ensemble
methods for classification [35]. Inspired by this method, we regard
each variant of the analog methods as a classifier for the past dates. A
past date can be classified as selected or unselected.

Although majority voting is a well-understood method, it is tedious
and error prone to manually set thresholds for each of the variants
independently. Therefore, we need to provide suggestions to guide
the user in making decision for the thresholds. Wherein, we design
a two-step solution: iterative threshold searching for C1 and C2, fol-
lowed by threshold suggestion and adjustment for C3, as shown in
Fig. 1. Among the three variants of the analog methods, C1 and C2
provide global and local aggregated descriptions for the similarity, re-
spectively, and C3 is a detailed measure. The goal of this design is
to ensure that the selected dates are identical to the current one both
globally and locally. Then adjustments can be made according to the
detailed measure of C3. Meanwhile, suggestions are provided for each
of the measures. In the framework, the user is expected to compare the
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Fig. 1. Visual Voting Framework. The framework comprises two main steps. The first step is the iterative threshold searching for C1 and C2. The
second step is the threshold suggestion and adjustment for C3. After thresholds are set for all the three classifiers, majority voting is applied in
order to achieve more reliable forecasts. Visual feedback of the result is presented to assist threshold setting through the whole framework.

suggestions with their expectations and then determine the acceptable
thresholds according to his expertise.

Among the three classifiers, the threshold for C1 is the most intu-
itive and simple for the domain experts to set manually. Therefore, our
solution begins with the initial input for C1, as indicated in Fig. 1.

4.2.1 Iterative Threshold Searching for C1 and C2
This step aims to determine the proper thresholds for C1 and C2. After
the initial input is set, a classification result (a set of analogs) can be
obtained using C1. Next, the user proceeds to find proper thresholds
for C2. According to the suggestion from the domain experts, the
selected identical forecasts should be similar to the current one both
globally and locally. Therefore, the dates that selected using C2 should
cover a specific portion (namely, covering rate) of those selected using
C1. The covering rate for small region ri is defined as follows.

CRri =
1
T ∑

t∈Q
σ(ri, t,βi) (1)

where Q is the set of selected dates using C1 with the initial input,
T is the number of dates in Q, βi is the threshold for the small re-
gion, and σ(ri, t,βi) = 1 if date t is selected using C2 for ri, otherwise
σ(ri, t,βi) = 0. Given a covering rate (namely, CRri , from the user),
the RMS differences of the small region are sorted first. The thresh-
old βi is then the smallest threshold by which the selected dates of
C2 cover the specified rate of the ones from C1. In our system, we
experimentally use a covering rate range of 0.6 to 0.8 to maintain the
identical dates selected using C1 and leverage the variance between
the dates selected using C1 and C2. Moreover, a lower bound of 20
and a upper bound, which is the higher value between the suggested
threshold and the one used for the large region, are used to ensure the
effectiveness of the result from C2, as indicated by S1 in Fig. 1.

After the suggestion for the range of the threshold in C2 is provid-
ed, the domain user can estimate the possible proper thresholds for C2
based on their expertise and the suggestions. Subsequently, the simi-
larity SR,t of a date t for a large region R can be computed using small
regions, which choose t as one of the most identical dates, as follows.

SR,t = ∑
ri∈R

σ(ri, t,βi)

ni
(2)

where ri indicates a small region within R, βi is the selected threshold
for the small region, ni is the selected analog number for ri under the
threshold of βi, and σ(ri, t,βi) = 1 if date t is selected using C2 for
ri, otherwise σ(ri, t,βi) = 0. Thereafter, the similarity is normalized
using the largest similarity value among all dates. This similarity is
then another meaningful cue for the date selection in the large region.
The suggested selected dates for the large region are then those which
satisfy the similarity with smallest RMS differences among all the past
dates, as indicated by S2 in Fig. 1. With a lower similarity, more dates
will be selected by C1, including less identical ones. In our system,
we experimentally use the similarity of 0.6 to ensure that the selected
dates for the large region are identical to the analyzed one.

New thresholds can be set iteratively until good similarities from
C1, and satisfactory covering rates from C2 are obtained.

4.2.2 Suggestion and Adjustment for C3
The next step is to adjust the threshold for C3. In our implementation,
we use the ratio of the variable RMS difference and the current forecast
variable value as the threshold. The ratio is a better measure compared
with the RMS difference. For example, the RMS difference of 5 mm
is comparatively small when the forecast precipitation is 30 mm, but
definitely too high when the forecast precipitation is 3 mm. However,
the ratio can handle these values effectively.

The suggested threshold θ of the ratio values for C3 is then esti-
mated by minimizing the bias between the selected dates by C3 and
those by C1 and C2, as indicated by S3 in Fig. 1.

min∑
t

∑
ri∈R

abs(C3
ri
(t,θ)−C1

R(t))+abs(C3
ri
(t,θ)−C2

ri
(t)) (3)

where C3
ri
(t,θ) is the class label of C3 for the small region ri on date t,

C1
R(t) is the class label of C1 for the large region on date t, and C2

ri
(t)

is the class label of C2. The labels of the selected and unselected dates
are set to 1 and 0, respectively. In our implementation, we sample the
ratio value with a small step size to achieve a set of bias values. Sub-
sequently, the ratio value with the minimum bias (Formula 3) is used
as the suggestion. In such circumstances, the domain user can lever-
age the suggested threshold and adjust the threshold for C3 to filter
past dates whose ratio values are clearly out of scope. When multiple
variables are employed, the threshold suggestion and adjustment are
conducted independently for each variable. As a result, the selected
dates for C3 are the dates selected by all the variables.

Through this voting framework, relatively proper thresholds for
each variant of the analog methods can be achieved through the user’s
supervisions and interactions. Combined with the majority voting, the
framework can produce more reliable results for domain usages.

5 SYSTEM AND VISUALIZATION DESIGN

In this section, we provide an overview of the system design and then
introduce the detailed visualization design in the system.

5.1 System Design
Our system is designed to assist the domain experts’ routine work.
Thus, a companion system workflow is designed according to their
calibration workflow, as illustrated in Fig. 2. According to the utilities
of different views and the goal of each task introduced in Section 3.1,
we divide our system workflow into five stages:

1.Data Overview: This stage helps domain experts obtain an
overview of the ensemble data.

2.Post-processing: This stage generates initial probabilistic fore-
casts using predefined parameters and completes the task of T1.

3.ROI Detection: An RMS difference glyph view is designed to
assist in detecting ROIs, where the initial probabilistic forecasts might
need refinements. Through this process, the task of T2 is supported.
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Fig. 2. Overview of the system workflow. (a) Overview of the numerical ensemble data. (b) Post processing using the analog method. (c) Detect
ROIs where calibrations may be required. (d) Visual calibration. (e) Forecast comparison and similar historical event analysis.

4.Visual Calibration: Coordinated views are designed to support
the visual voting framework. This stage provides support for the task
of T3, which is our main focus in this study.

5.Comparison and Event Analysis:The adapted forecasts gener-
ated after the visual calibration are compared with the initial proba-
bilistic forecasts to show how visual calibration works. Meanwhile,
the most similar historical events are presented to verify the forecast.

A calibration task can be completed through all the five stages di-
rected by a user guideline (Fig. 6(e)). We focus on the ROI Detection
stage and the Visual Calibration stage in the following. The usage of
other stages are demonstrated in the case studies.

(a) (b)

(c)

Fig. 3. RMS Difference Glyph: (a) Overview of the whole map. (b)
Region of interest. (c) Glyph for a small region.

5.2 ROI Detection
This RMS difference glyph view serves the stage of ROI detection
(Fig. 3(a)). In this view, the aggregated RMS differences of the select-
ed analogs for a small region are conveyed through a circular glyph
as illustrated in Fig. 3(c). The angle is cut into N parts to visualize
the sorted RMS differences of the N selected analogs. Color is used
to encode the RMS difference in each arc. We choose the color se-
quence from colorbrewer2.org [11] to ensure the linear expression of
RMS difference values. The glyph is placed according to the position
of the small region on the map. A user can zoom in to obtain a detailed
view of the RMS differences or zoom out to achieve an overview of
the whole map (Fig. 3(b)). Furthermore, the user can brush to selec-
t a region for the subsequent analysis stages. With this view, a user
can efficiently locate the ROIs where analogs with larger RMS dif-
ferences are selected, and further calibrations might be needed. In this
design, the glyph is chosen for its rich applications in domain research.
Meanwhile, the view conforms to the information seeking mantra of
”Overview first, zoom and filter, then details on demand” [31].

5.3 Visual Calibration
Coordinated views and interactions are designed to implement the vi-
sual voting framework.

5.3.1 View Design
The calibration view comprises one geographical view (Fig. 6(a)) and
three views that correspond to the selected three variants of analog
methods (Fig. 6(b) for (C1), Fig. 6(c) for C2 and Fig. 6(d) for C3).

Geographical View: The geographical view is the RMS difference
glyph view laid on a geographical map (Fig. 6(a)). This view presents
the glyphs for the selected ROI from the previous stage. Furthermore,
users are allowed to brush a subset of the small regions to initiate fur-
ther detailed analysis.

Region RMS Difference View: The region RMS difference view
is used to visualize the large region RMS differences and similarities
of past dates (Fig. 6(b)) for C1. This view comprises two components,
namely, a line chart (Fig. 6(b1)) and a color bar (Fig. 6(b2)).

The line chart visualizes the sorted RMS differences of the large
region. The x axis of the chart conveys the sorted dates based on the

RMS differences, and the y axis presents the difference values. The
RMS differences provide visual cues for the threshold setting, and the
orange line shows the current selected RMS difference threshold (s-
elected analog number). The color bar is used to visualize the simi-
larity encoded using the selected dates from C2. The sorted dates are
separated into a series of bins. Each bin is encoded with gray color
to represent the average similarity value of the corresponding dates.
The suggested threshold is then indicated by a purple line as shown
in Fig. 6(b1). In this view, the user is expected to select a threshold
smaller than the suggested value according to the increasing trend of
the line chart and colors from the color bar.

Small Region RMS Difference View: The small region RMS dif-
ference view is a pixel bar chart used to convey the aggregated RMS
differences for the small regions within the ROI (Fig. 6(c)). Each bar
represents a small region and the RMS differences of all the past dates
are encoded into the pixel color in the y axis direction (see Figure 7(a)).
The view is designed to support the threshold setting for C2 (Fig. 5(a))
and visualize the final voting results (Fig. 5(b) and 5(c)).

(a) (b)

(c) (d)
Fig. 4. Sorting for the pixel bar chart: (a) Initial data visualization without
sorting. (b) Sorting according to the aggregated RMS differences for
each small region. (c) Sorting according to the average aggregated
RMS differences for all the small regions. (d) A typical threshold setting
for the sorted pixel bar chart.

(a)

(b)

(c)

Fig. 5. Different utilities of the pixel bar chart: (a) Supporting thresh-
old setting. (b) Visualizing the voting results. (c) Visualizing the voting
results by accumulating selected dates.

To support intuitive and efficient threshold setting for each small
region, sorting is adopted in our implementation. First, we sort the
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Fig. 6. Coordinated views for the calibration stage: (a) The geographical view. (b) The region RMS difference view. (c) The small region RMS
difference view (d) The small region variable RMS difference view. (e) The user guide.

aggregated RMS differences for each small region (see Fig. 4(a)). In
Fig. 4(b), the date with the smallest RMS difference is placed at the
bottom of each bar, and the largest at the top. Then inspired by the
common experience that the more unusual the prediction forecast is,
the smaller N value should be employed, we sort the bars horizontally
according to the average aggregated RMS differences of the small re-
gions. In Fig. 4(c), the average RMS differences of the bars increase
from the left to the right. A typical threshold selection for the small
regions can then be set, as shown in Fig. 4(d). Meanwhile, the sug-
gestions from the classification result of C1 should be presented to the
user, which are highlighted by two purple lines in Fig. 6(c).

To visualize the final voting results, the pixels that represent unse-
lected dates are hidden (Fig. 5(b)). Moreover, the remaining pixels can
be accumulated to provide a more intuitive impression of the number
of selected dates for the small regions (Fig. 5(c)). The suggested low-
er bound for the number of selected dates is also indicated by a purple
line in the view, which is a visual suggestion for the whole framework.

In this view, the pixel bar chart is selected because the chart is intu-
itive and simple, and can visualize a large amount of data.

d1
d2
d3

d1 d2 d3
d2

d1
d3

Region One Region TwoRegion OneRegion Two

(a) (b) d1d2 d3

Fig. 7. Two illustrative layouts of the bar charts, which contain three
selected dates for each of the two regions in (a) the RMS difference
view and (b) the variable RMS difference view, respectively.

Small Region Variable RMS Difference View: This view is de-
signed to support the classification using C3 (Fig. 6(d)). This view
also comprises two components, namely, a bar chart (Fig. 6(d1)) for
visualizing the ratio values and a line chart (Fig. 6(d2)) for the bias
defined by Formula 3. The bar chart shares the same axis with the
pixel bar chart in the Small Region RMS Difference View. For each
small region, bars that encode ratio values of past dates are horizon-
tally placed in the x axis with the same order utilized by the y axis
of the pixel bar chart, as illustrated in Fig. 7(b). In case of a major-
ity voting of three variants, only those dates that have been selected
using C1 or C2 are presented. Through the bar chart visualization,
outliers can be detected and filtered by adjusting the threshold for the
ratio value more easily, compared to the pixel bar chart. The line chart
(Fig. 6(d2)) visualizes the biases between the dates selected using C3

and those selected using C1 and C2 under different thresholds for C3.
The user can achieve a clear view of the bias distribution and estimate
the proper threshold while avoiding a huge bias. The suggestion is in-
dicated by a purple line in Fig. 6(d). In this view, the user is expected
to adjust the threshold to filter dates with improper ratio values.

5.3.2 Interactions and View Coordination
The four small views are all linked. Double clicking and brushing
are supported to enable the setting of the thresholds for C1 and C2,
respectively. Suggestions are updated immediately after the user in-
put is completed. The iterative threshold searching for C1 and C2
can be efficiently conducted through these interactions. When ad-
justing the threshold for C3, the final results are also updated in real
time, as shown in Fig. 5(c). Therefore, the domain user can achieve
a clear view of the final voting results and leverage the proper thresh-
old. Highlights are also designed to enhance the linking among views
as indicated by the red arrows in Fig. 6, which is helpful for users to
understand the relationship of information conveyed by the views.

6 EVALUATION AND DISCUSSION

Two case studies are presented in this section to exhibit the usability of
our system. The first case demonstrates the common workflow of our
system to help visually calibrate a forecast. The second case demon-
strates the use of our system in detecting an unusual forecast and in
providing supports for the verification based on long historical data.

Experiments have been performed with domain experts to calibrate
the probabilistic forecasts of the total accumulated precipitation for 24
hours. Three forecast variables are adopted, namely, total accumulated
precipitation (APCP), precipitable water (PREW), and temperature at
2 m (T2M), which are provided by our domain collaborators. Our
system uses the data from 2002 to 2013, and only those dates within a
window size of 70 that center on the analyzed day are adopted for each
year. In addition, the weighted summary of APCP and PREW is used
as the aggregated variable with the weights of 0.7 and 0.3, respectively.
These values are also the weights adopted by one of our collaborators
in his domain research on the precipitation forecast.

6.1 Case One
The data used are from April 27, 2013. After loading the data, our sys-
tem provides an overview of the data, as is illustrated in Fig. 8(a). A
heavy precipitation is recorded in the United States. Post-processing is
then performed with the aggregated variables, and initial probabilistic
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Fig. 8. Case One: This case shows the workflow of our system and the advantage of the visual voting framework compared with the existing
method. (a) The data overview stage provides a 2D plot view of the ensemble data. (b) The ROI detection stage helps users detect the ROI,
wherein further calibration is required. (c) The visual calibration stage applies the visual voting framework, and users are included to manipulate
the analog methods. (d) The forecast comparison stage supports the comparison between the initial forecasts from the post-processing stage and
the calibrated forecast. The latter can better reflect the observed data in the probability distribution with a high probability in the region with high
precipitation, as indicated by the red arrow in (d3) and (d4).

forecasts are generated using the analog method of C2. In the ex-
periment, two results with different analog numbers, namely, 50 and
70, are generated, as shown in Fig. 8(d1) and Fig. 8(d2), respectively.
The analog number 50 is suggested by one of our domain collabo-
rators based on his previous research. Thereafter, an ROI with high
RMS differences is brushed for the further calibration, as illustrated in
Fig. 8(b). In case of high RMS differences, biases may occur in the
probabilistic forecast of the region. The visual calibration stage begins
with an estimation for the threshold of C1. Given that the threshold
does not necessarily have to be accurate, and that it can be refined
through successive iterations, an analog number of 50 is also set as
the initial input. Threshold searching iterations are then performed, as
shown in Fig. 8(c1) and Fig. 8(c2). For small regions with low RMS d-
ifferences, high analog numbers are applied, as indicated by the brown
arrow in Fig. 8(c2). For the small regions indicated by the red arrow in
Fig. 8(c2), RMS differences are mostly over 10 mm, which are high for
the current weather. Therefore, the thresholds for these small regions
are nearly at the suggested lower bound. In the color bar which en-
codes the similarity of past dates in the large region, a clear distribution
of the similarity is presented, as shown in the red borders in Fig. 8(c1).
The threshold for C1 can then be set to ensure that the selected dates
all possess high similarity values. After the refinement iterations, the
thresholds are adjusted for the variables. The bias distribution and the
suggested threshold for APCP are evident, as indicated by the brown
arrow in Fig. 8(c3). However, the minimum bias for T2M is reached
with a ratio of nearly 0, as indicated by the red arrow in Fig. 8(c3).
This finding indicates that the most similar dates based on APCP and
PREW differ significantly from those based on T2M, which confirm-
s the previous research conclusion that precipitation forecast accuracy
decreases by including T2M when finding analog dates for the precipi-
tation [9]. The thresholds are then adjusted to filter dates that are clear
outliers and decrease the distance between the current threshold for
APCP and the suggested threshold, while ensuring that the remaining
numbers of selected dates for the small regions are mostly above the
lower bound, as shown in Fig. 8(c4). Thereafter, the calibrated proba-
bilistic forecast is generated, as shown in Fig. 8(d3). Meanwhile, the
observed map for the same day is shown in Fig. 8(d4).

As indicated in the observed map, the precipitation in the region
indicated by the red arrow is evidently heavier than that in the re-
gion indicated by the brown arrow. Hence, the calibrated probabilistic

forecast generated using the visual voting framework can reflect the
precipitation distribution better than the initial forecast when the prob-
ability is higher in the region indicated by the red arrow than in the
region indicated by the brown arrow.

6.2 Case Two
The data used are from August 25, 2013. The overview of the ensem-
ble data is illustrated in Fig. 9(a). A heavy precipitation is recorded in
Arizona, US (highlighted in the red rectangle in Fig. 9(a)). However,
the RMS differences in this region are high, which shows that further
analysis may be required for this region. The ROI is then selected
from the RMS difference glyph view as illustrated in Fig. 9(b). Dur-
ing the visual calibration stage, the suggested analog number for the
large region continues to decrease when we perform threshold search-
ing iterations, as shown by the red arrows in Fig. 9(c1) to 9(c3). The
suggested analog number only stops decreasing when the suggested
range for the small regions reaches the lower bound set in our system,
as indicated by the red arrow in Fig. 9(c4). By this time, the suggest-
ed analog number for the large region is nearly below 10. Thus, the
current forecast can be regarded as a probable unusual forecast even in
the long history. Thereafter, the most similar analogs can be viewed,
and two of these analogs are shown in Fig. 9(d1) and Fig. 9(d2). For
each analog, the left part of the figure is the forecast of the analog,
whereas the right part is the corresponding observed data. Based on
the analogs, we can conclude that the forecast is mostly expected to
be higher than the observed weather in the region. This conclusion
can also be achieved through the probabilistic forecast and confirmed
by the observed data for the same day, as shown in the red borders in
Fig. 9(d3) to 9(d4). The probability of the precipitation is low in that
region, but the forecast precipitation in Fig. 9(a) is high. Moreover,
the observed data shows a lower precipitation than the forecast.

6.3 Domain Expert Feedback
The proposed system is developed in close collaborations with the
meteorologists. A senior forecaster and an experienced meteorolo-
gist who has conducted extensive research on the analog method are
involved in the development process. Two meteorologists who spe-
cialize in weather forecast verification then help evaluate our system.
We have collected their feedback about the system as well as other
important topics, such as the accuracy and speed improvement.
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Fig. 9. Case Two: This case shows the usability of our system in detecting an unusual forecast. In this case, the suggested analog number for the
large region continues to decrease, as indicated by the red arrows in (b). The small suggested analog number shows that the current forecast is
unusual even in the long history. Similar previous forecasts are then utilized to assist in further analysis.

System Evaluation Among the four experts, the weather fore-
caster helps ensure that the system workflow fits the domain experts’
routine workflow smoothly through the development. He appreciates
the analog methods integrated into the interactive system the most. In
terms of visualization, the weather forecaster admires the pixel bar
chart and the brushing interaction the most. He believes that the view
is intuitive and expressive in conveying the RMS differences.

The meteorologist with extensive experiences in analog method re-
search appreciates the interactivity of the tool in supporting the method
the most. He said:“ The tool mimics the way a weather forecaster
thinks about the weather prediction process. They typically compare
today’s weather forecasts to past forecasts, think about what actual-
ly happened, and construct a mental model for today’s forecast. The
analog procedure you demonstrate is sort of like an objective way for
a forecaster to visualize what’s in his brain.”

The two meteorologists who specialize in verifying weather fore-
casts are extremely interested in our system. Both meteorologists in-
dicate that the tool is highly useful in long-time forecast verification,
which covers years of data. The meteorologists admire the usability of
the method in verifying precipitation level. Meanwhile, they comment
that the analog method is ineffective in detecting the shape and posi-
tion biases of precipitation regions, which is the method’s limitation.

Accuracy Improvement The four domain experts all confirm
that our system is the first interactive tool they have ever known and
used to assist the calibration using the analog method from a long his-
torical perspective. The system enables them to explore the historical
data and understand the forecast better, which is difficult to achieve
without our system. They agree that this can enhance their justifica-
tions for the calibration and improve the quality of the calibration.

During the discussions with the domain experts, they point out three
typical scenarios under which our system might work well. First, when
the numerical prediction model is updated, the potential bias patterns
in the forecast might change. Second, our system is especially useful
for a novice forecaster. Novice forecasters usually know little about
the potential bias patterns existing in the ensemble forecast. Through
our system, they can quickly understand the data and conduct bet-
ter forecast calibrations. Third, when unusual events occur, forecast-
ers can locate historical similar events quickly with our system and
conduct the further analysis. In all these scenarios, forecasters might
doubt about how to calibrate the ensemble forecast, and our system
can provide informative assistances for them.

Speed Improvement The senior forecaster points out that what
our system introduces is a new calibration process for him. Whether
our system will help speed up the entire calibration depends on the

complexity of the forecast and experiences of the forecasters. For ex-
ample, an experienced forecaster might be able to complete a forecast
calibration very efficiently. Our system might not help speed up, but
increase his confidence in the calibration. However, if the bias patterns
in the forecast are hard to justify through domain experts’ experiences,
our system will help speed up the calibration. He also mentions that,
there is no way for him to calibrate the forecast from a long historical
perspective without our system. Although the analog methods have
been proved to be useful for improving the quality of calibration. It
has still not been widely used in the forecasters’ routine work. Among
the four domain experts, one of them is using the method through a
console window, which is a text user interface. The other three have
no easy access to use it.

6.4 Discussion
Based on the case studies and domain expert feedback, our system can
effectively support the domain experts’ routine work. Although our
system has demonstrated advantages in supporting the weather fore-
cast calibration, several issues still require further discussions.

First, our framework extends the analog method through the major-
ity voting. Since the analog methods have many variants, the voting
is a good choice to deal with the analog selection problem when we
use several variants simultaneously. Meanwhile, we have designed a
thorough process to assist domain experts in setting thresholds for the
three selected variants. This can enhance the step of the analog se-
lection and the generation of the probabilistic forecast. Therefore, the
quality of the calibration can be improved.

Second, we have conducted an evaluation of the time that our sys-
tem might cost through experiments. Currently a typical analysis pro-
cess for an ROI might cost about 5-8 minutes. The time can be further
reduced when the experts become familiar with the system. We can
further reduce the time by, for example, enhancing the brushing in-
teraction by selecting patches on a segmented map and setting up a
database to reduce the time for fetching the related data.

Third, the ROI in our system is a special case and we define it as
the region which selects analogs with high RMS differences for gener-
ating the probabilistic forecast. It is different from the ROI definitions
in some previous research, such as regions with high data uncertain-
ty [30] and those with predictive error [6]. More specifically, our ROI
definition is to detect the region where errors might exist in the gener-
ated initial probabilistic forecast.

Fourth, the final results might be different when the same forecast is
analyzed by various users. However, the suggestions provided by our
system can work as a constraint and guide user interactions. This fea-
ture can considerably decrease the variances during interactions and
indirectly keep the results consistent.



7 CONCLUSION AND FUTURE WORK

In this study, the calibration problem is characterized and the analog
method is utilized to support it. A visual voting framework is proposed
to address problems in the existing analog methods. Moreover, a visu-
alization system based on the framework is provided to assist in cali-
brating weather forecasts. Coordinated views and intuitive interactions
are provided in the system to support the involvement of the profes-
sional knowledge of domain experts in the statistical method. There-
fore, the calibration can be better conducted. The system is developed
through close collaborations with the domain experts. Case studies
and feedback from the domain experts have exhibited the promising
application of our system in supporting the calibration.

In the future, we will integrate our system into the domain system
that we are developing with the domain experts. We plan to include ad-
ditional statistical methods in the system to solve problems that cannot
be addressed well by analog methods, such as considerable position
and shape bias of the precipitation region and the continuous calibra-
tion for meteorological events that last for several days.
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