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Abstract—Visualizing complex volume data usually renders selected parts of the volume semi-transparently to see inner structures of
the volume or provide a context. This presents a challenge for volume rendering methods to produce images with unambiguous depth-
ordering perception. Existing methods use visual cues such as halos and shadows to enhance depth perception. Along with other
limitations, these methods introduce redundant information and require additional overhead. This paper presents a new approach to
enhancing depth-ordering perception of volume rendered images without using additional visual cues. We set up an energy function
based on quantitative perception models to measure the quality of the images in terms of the effectiveness of depth-ordering and
transparency perception as well as the faithfulness of the information revealed. Guided by the function, we use a conjugate gradient
method to iteratively and judiciously enhance the results. Our method can complement existing systems for enhancing volume rendering
results. The experimental results demonstrate the usefulness and effectiveness of our approach.

Index Terms—volume rendering, depth ordering, depth perception, transparency, visualization.
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1 INTRODUCTION

H UMANS perceive the world in three dimensions, and can
determine correct spatial relationships between objects

based on several key depth cues [38]. 3D graphics researchers
consider these depth cues in designing rendering methods. To
visualize complex volume data composed of many surface
layers and fine features, however, direct rendering methods
sometimes fail to produce images that can unambiguously
present the depth information of partially occluded structures
that are rendered semi-transparently. In this work, we show
that by optimizing rendering based on a set of perceptual
models, it is possible to effectively enhance the interpretation
of depth ordering of volumetric and surface features in the
resulting 2D images.

Correct depth perception helps users understand spatial rela-
tions among structures. For example, in medical visualization
for pre-surgery planning, the correct inference of doctors
on spatial relations between structures, such as the relation
between important vessels and tumors, is critically important
to avoid committing mistakes during surgery. Correct depth
perception is also important in volume rendering, given that
structures are usually rendered semi-transparent to expose ad-
ditional information. Without appropriate enhancement, semi-
transparent rendering may lead to misinterpretation of spatial
relations between structures and may cause serious problems
[5]. Although this problem could be alleviated to some extent
by the interactions of users such as rotation, it ultimately
relies on the ability or experience of users to perceive the
depth relations correctly during their interaction with objects.
Furthermore, in some typical scenarios, such as when a static
image or poster is shown, user interaction is not available.
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Researchers have introduced several methods to ease the
difficulty of depth perception without user interaction. Per-
spective projection is the most common method [24] used
to convey depth information in computer graphics and visu-
alization. However, it is insufficient in revealing the correct
depth ordering in volume rendering. Figure 2 (b) shows semi-
transparent layers presenting ambiguity. Researchers have pro-
posed other methods to provide depth cues in volume render-
ing. For example, halos or shadows can be used in volume
rendering to highlight foreground structures [6], [9], [14]. They
work well only when the information of the front structures is
required. However, as halos occlude part of the context, depth
information is conveyed at the cost of background details.

Recent studies in visual psychology reveal that the per-
ception of depth ordering of semi-transparent structures are
highly dependent on transparency (see Figure 2). The Adelson-
Anandan-Anderson’s X-junction model (simply called X-
junction model) [2] and its complement, Transmittance an-
choring principle (TAP) [4], are two of the most important
findings in the field. The models can quantitatively evaluate the
quality of depth ordering perception of spatial structures based
on the structure transparency and luminance. This inspires us
to develop a new transparency optimization method with the
models to enhance the depth ordering perception of spatial
structures without introducing extra illustrative cues. To ac-
complish this, we set up a novel energy function to quantify the
effectiveness of perceived depth ordering perception using the
X-junction and TAP models, the effectiveness of transparency
perception using Metelli’s episcotister model, as well as the
faithfulness of the representation using a conditional informa-
tion entropy measure. Our approach creates a desirable result
by optimizing the energy function using a conjugate gradient
optimization scheme. We believe that a volume rendered image
with minimum ambiguity is necessary before any illustrative
effect can be applied. The paper contributions are as follows:
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• Investigation of a new problem of how to perceptually
enhance the depth ordering of semi-transparent structures
by adjusting only transparency and luminance.

• Introduction of perception models for quantitative mea-
surement of perceived depth ordering, and a new measure
to assess the image quality with the models.

• Design of an optimization framework to enhance the
depth ordering perception with inherent visual cues while
preserving the original transparency and information.

2 RELATED WORK

Researchers in computer graphics have employed various
visual cues to enhance the depth perception of 3D models.
However, some methods are not suitable for volume rendering,
given that volume rendered images usually contain sophisti-
cated features that are often rendered semi-transparently. In
this section, we only discuss previous work on depth order-
ing perception and enhancement of semi-transparent features.
Interested readers can refer to [11] for additional details on
general depth enhancement in computer graphics.

Transparency perception has been studied in psychology for
decades. Metelli’s episcotister model [23] is the first quan-
titative model to evaluate visual perception of transparency.
Recently, Singh and Anderson introduced the transmittance
anchoring principle (TAP) [33] to measure the transparency of
layers in images by image contrast. Chan et al. [8] developed
a system to optimize transparency automatically in volume
rendering based on Metelli’s episcotister model and TAP, thus
improving the perceptual quality of transparent structures.
Although our method also deals with transparency perception,
we emphasize the adjustment of transparency to enhance the
depth perception of semi-transparent structures.

Transparency is an important visual cue in the perception
of depth ordering for semi-transparent structures. The X-
junction model [2], [4] and its extensions [28], [32] utilize
contour junctions in overlapping semi-transparent structures
to measure depth ordering perception. These models can be
used to depict a special situation in which a user is likely to
perceive the correct depth ordering. Several other situations
with different configurations are considered to be ambiguous
situations by the model. TAP [33] can also be used for
depth perception. It can mainly handle one of the ambiguous
situations. Based on this theory, the highest contrast region
along a continuous contour appears to be the background and
the regions with lower contrast are decomposed into multiple
layers. X-junction model has also been discussed in volume
rendering [5]. In our work, we combine the X-junction model
and TAP to guide the optimization of transparency settings.
In the previous experiment, when dynamic cues were applied,
the ambiguity of depth perception was significantly reduced
using motion parallax and perspective projections. In contrast,
our work can reduce depth ordering ambiguity by adjusting
the transparency and luminance of features.

Researchers have proposed the use of stereoscopic rendering
to facilitate volumetric data exploration [7]. However, the
usefulness of the stereoscopic technique is still controversial
[17]. In monocular systems, shadows and halos have been

widely used for depth enhancement in volume rendering.
Yagel et al. [40] used recursive ray tracing to add shadows
in volume visualization. Kniss et al. [20] proposed an inter-
active shading model based on volumetric light attenuation
effects to incorporate volumetric shadows in volume rendering.
Šoltészová et al. [36] proposed a new method called chromatic
shadowing based on a shadow transfer function to handle the
over-darkening problem, thus allowing for better perception
of details in the shadowed areas. Adding halos is another
useful technique for conveying depth information [6], [14],
[27]. Bruckner and Gröller [6] introduced an approach that
enables users to generate halos interactively for volume data
using the halo transfer function. Everts et al. [14] presented
a technique to create depth-dependent halos for 3D line data.
Some researchers advocated the use of color to enhance depth
perception [10], [37] in volume rendering. Chuang et al. [10]
suggested reducing color saturation in occluded objects only in
the overlap region while keeping its lightness. Wang et al. [37]
used cold colors such as green, blue, or cyan to encode the
foreground, and warm colors such as red, yellow or magenta to
encode background. Texture has also been proposed to convey
the 3D shape of semi-transparent surfaces [18].

Shadows and halos are effective means to convey depth
information for opaque surfaces, but come at the expense of
occluding other structures. In comparison, our approach aims
to enhance depth perception of semi-transparent objects by
adjusting transparency and luminance of features without addi-
tional visual cues. Our method is based on a quantitative depth
perception model specifically designed for semi-transparent
surfaces. Thus, our approach can enhance the perception of
depth ordering automatically and quantitatively.

Transfer functions are used to classify data in volume
rendering based on data dimensions such as intensity, gradient
magnitude [21], curvature [19] and/or local structures [31].
Researchers have also developed various approaches such as
visibility histograms [12] and visibility driven visualization
[35] to automatically highlight important structures by increas-
ing their visibility in the resulting images. Wu and Qu [39]
developed a method for optimizing transfer functions based on
a user-specified objective function to enable users to directly
edit features on volume rendered images. Takahashi et al. [34]
proposed a multi-dimensional transfer function to emphasize
nested inner structures in volume rendered images based on the
relative geometric positions as well as the scalar field values
of the structures. Our work can be viewed as an important
complement to transfer function specification to improve depth
ordering perception. To the best of our knowledge, we are the
first to study the quantitative evaluation and enhancement of
depth ordering perception in volume rendering.

3 SYSTEM OVERVIEW

We design a fully-automatic framework to enhance depth
perception and to correct misleading quantitative orderings. It
can measure the quality of semi-transparent volume rendered
images based on the effectiveness of perceived depth ordering
and transparency, as well as the faithfulness of the information
revealed. The complete pipeline of our system is presented
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Fig. 1. System overview. Given an image produced with an input transfer function, we preprocess the image to
detect X-junction areas. Next, the framework automatically optimizes the image quality through iteratively adjusting the
transfer function based on three measures (depth, transparency, and faithfulness) until the optimization converges.

in Figure 1. Given an input dataset with its initial transfer
function, we first preprocess the data by rendering an initial
image with current rendering parameters. Furthermore, we
detect and record the junction areas in the current rendered
image, which are used for later evaluation.

The framework uses a conjugate gradient method to search
for an optimal result. We set up an energy function to
quantify the effectiveness of candidate solutions during the
optimization. The effectiveness quantification consists of three
quantitative measures: depth, transparency, and faithfulness
measures. The depth measure is for quantifying the difference
between the depth ordering perceived by users and the actual
depth ordering in the data. By minimizing this difference, we
ensure that the correct depth ordering is perceived in a 2D
image. The transparency measure evaluates the change in per-
ceived transparency during the optimization based on Metelli’s
episcotister model. By minimizing this change, we can pre-
serve the transparency perceived by users. The faithfulness
measure is used to estimate the faithfulness of the information
revealed in the newly generated candidate images. Guided by
the energy function, we use a conjugate optimization scheme
to optimize the transfer funcyion to iteratively approximate an
optimal result until we reach a specified termination condition.

4 QUANTITATIVE PERCEPTION MODELS
Despite recent advances in volume rendering, only a few
methods exist for the enhancement of depth perception. These
include halos, occlusions, and shadows, and each has its own
limitations. For instance, occlusion is an intuitive and natural
monocular depth cue, but is deemed inappropriate in volume
rendering in which structures are rendered semi-transparently.
Halos and shadows [6], [9], [14] are helpful in some cases,
but they could likely occlude contextual structures. To alleviate
this problem, halos are usually combined with filtering.

Research in perception focuses on the physiological capa-
bilities of the human visual system. In recent years, quan-
titative models have been introduced. In particular, several
theories have been proposed with respect to the perception of
transparency layers and depth ordering, which can be applied
towards our goal of depth perception enhancement. Two theo-
ries (X-Junction model and TAP) suggest that enhancement of

perceived depth ordering can be achieved simply by adjusting
the opacity and luminance of the volume. In contrast to
previous work, the addition of redundant parameters to make
foreground objects stand out becomes unnecessary.

4.1 X-Junctions
Previous studies in visual psychology indicate that trans-
parency and luminance provides an important cue for per-
ceiving the depth ordering of multiple semi-transparent layers.
The X-junction model [2] reveals that the order of increasing
or decreasing luminance value in an X-junction is crucial
for depth ordering perception. The red point highlighted in
Figure 2 (a) shows a typical X-junction surrounded by four
areas p,q,r, and s. The luminance values of the areas are
denoted by lp, lq, lr, and ls, respectively. The model determines
whether a user can perceive the correct depth ordering of
layers based on the contrast polarity arrangement of the areas.
Reversing the contrast polarity arrangement represents the
change of the luminance order in the regions. For example,
in Figure 2 (a), reversing means that lp > lq and lr < ls.

The X-junction model defines three types of reversing junc-
tions: non-reversing, single-reversing, double-reversing junc-
tions. We do not discuss double-reversing junctions in this
research, since they do not allow for transparency and thus
are unsuitable for volume rendering. Non-reversing junctions
support the perception of transparency but leave the depth
ordering ambiguous (See Figure 2 (b)). In these cases, lp < lq
and lr < ls, which means the vertical edge (green edge in
Figure 2 (a)) retains the same sign in both halves of the X
junction; lp < lr and lq < ls, which indicates the horizontal
edge (blue edge in Figure 2 (a)) also retains the same sign in
both halves of the X junction. As both edges retain their signs,
we call this a “non-reversing” junction. The descending order
of the luminance values composes a Z configuration (Figure 2
(c)). If lr = lq, then it changes to A configuration (Figure 2
(b)). As the depth orderings for these cases are ambiguous,
they are also called Z ambiguity and A ambiguity.

In contrast, single-reversing junctions fully support the
perception of depth order and can clearly reveal the correct
depth ordering (Figure 2 (d)). In this case, lp > lq and lr < ls.
For the pairs of areas along the vertical edge, the descending
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Fig. 2. (a) Illustration of an X-Junction marked by a red point. (b) A configuration. (c) Correct Z configuration. (d) C
configuration. In this case, the depth ordering is unambiguous. (e) Wrong Z configuration.

order of the luminance changes across the X junction. In
addition, we have lp < lr and lq < ls, and the horizontal edge
retains its sign. We call this a “single-reversing” junction. The
descending order of luminance constructs a C configuration
(see Figure 2 (d)). The X-junction model relies only on the
relative luminance and transparency values around a junction.
Thus, we can simplify our procedure by adjusting only the
transparency and luminance of the features.

If only the luminance values of the four areas are known, the
depth order of the layers is still left unknown. The X-junction
model summarizes four possible local hypotheses about the
situation of the frontal layer using these decision rules:

i. If 0 < (lp − lq)/(lr − ls) ≤ 1, it lies above the middle
horizontal line in the X-junction;

ii. If 0 < (lr− ls)/(lp− lq) ≤ 1, it lies below the horizontal
line in the X-junction;

iii. If 0< (lp− lr)/(lq− ls)≤ 1, it lies to the left of the middle
vertical line in the X-junction;

iv. If 0 < (lq − ls)/(lp − lr) ≤ 1, it lies to the right of the
vertical line in the X-junction.

Conditions (i) and (ii), as well as Conditions (iii) and (iv),
are mutually exclusive unless the ratio is equivalent to one.
Thus, we can first calculate the luminance of the areas around
the junction for comparison, and then find the composition of
the transparent layers using the four local hypotheses. Finally,
we can derive the perceived depth ordering of the layers.

One of our goals is to simplify the process for users to
perceive depth ordering information. Compared with existing
methods that introduce additional information, a better solution
is to rely on the transfer functions of volume rendering. During
volume rendering, different features are assigned different
opacities, colors, and luminances by the transfer functions.
When we interact with the rendered volumes, features are
usually shown as overlapping semi-transparent layers in 2D
images, creating a set of X-junctions. Since opacity and
luminance are the basic parameters of volume rendering, they
can be utilized for depth enhancement without additional costs.
Thus, the X-junction model can be used to estimate how a user
perceives the depth ordering of semi-transparent structures.

4.2 Transmittance Anchoring Principle
When the X-junction conforms to the single-reversing situa-
tion, it is trivial to determine the depth ordering based on the
C configuration. However, in the non-reversing situation (see
Figure 2 (c)), the model fails to predict the perceived depth
ordering. It has been reported that in this situation the frontal

layer could still likely be distinguished by the human visual
system in the Z configuration [33]. To overcome the limitations
of the X-junction model, researchers have proposed to use the
Transmittance Anchoring Principle (TAP) model to handle Z
ambiguity [33]. Thus, TAP can be regarded as a complement
to the X-junction model. According to TAP, the human visual
system perceives the regions of highest contrast along their
internal or external contours as transmittance anchors. In other
words, regions with the highest contrast are perceived to be in
the background. Regions with lower contrast are perceived to
be in the front. For the situation called A ambiguity in Figure 2
(b), both areas r and s, and q and s have almost the same
contrast. In this case, each layer has the same probability of
being perceived as the frontal layer and existing psychological
models cannot predict the perceived depth ordering.

4.3 Combination of X-Junctions and TAP
In volume rendering, ideal depth perception corresponds to
the situation in which each X-junction can conform to the C
configuration, providing clear visual depth cues. Additionally,
the contrast between the areas must be high enough for human
beings to notice. However, it is usually difficult to let all junc-
tion areas conform to the C configuration in practice. When
some junction areas do not conform to the C configuration
and exhibit the Z ambiguity, we should ensure that they at
least conform to the correct Z configuration to resolve the
ambiguity. As the TAP model can complement the X-junction
model to deal with this situation, we judiciously combine X-
junction and TAP models to quantitatively measure the quality
of depth ordering perception.

We first use the X-junction model to estimate the perceived
depth ordering. If this model fails, which means that depth
ambiguity occurs, we then use the TAP model to deal with the
Z ambiguity situation. Since TAP is sensitive to the contrast
between p,q,r,s areas, it can help us decide the perceived
depth ordering when Z ambiguity presents. For example, in
Figure 2 (b), the panel in the lower left corner is in the front,
representing A ambiguity. If the luminance value of region r
is lower than region q (region r is darker), we will perceive
an incorrect depth ordering based on the TAP theory, which
indicates that the panel in the lower left corner is in the back.
We can increase the luminance value of region r and decrease
the luminance value of region q. After the Z configuration,
which can be resolved by the TAP theory, has been achieved,
we proceed to adjust the luminance and opacity and further
improve it to C configuration.
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(a) (b) (c) (d)

Fig. 3. Illustration of the optimization process. (a) A preliminary volume rendered image showing three panels (A, B,
and C) whose depth order is ambiguous (the real front-to-back order is A, C, and B). (b) An intermediate result of depth
ordering enhancement without preserving the transparency and considering image faithfulness. (c) An intermediate
result of depth ordering enhancement without considering image faithfulness. (d) A final result where the image quality
is optimized in terms of depth ordering and transparency perception as well as the information faithfulness.

5 QUALITY OPTIMIZATION
Without enhancement, typical volume rendered images could
often mislead users because the perceived depth ordering of
features does not always clearly present the actual spatial
relationship. For example, in Figure 2(b), the depth ordering
between the semi-transparent structures is ambiguous. It is
difficult to tell which layer is in the front. Additional vi-
sual cues such as halos may help, but come at the cost of
discarding information. To address this problem, we design
an optimization system for automatically and quantitatively
enhancing depth perception with a minimal change to the
perceived transparency and visual display.

The system requires an initial transfer function to create
a preliminary image result. Junction points for each pair of
overlapping semi-transparent structures are identified to derive
the perceived depth relations using the perception models
described in Section 4. We set up an energy function for
measuring the quality of volume rendered images according
to the quality of depth ordering perception and transparency
perception as well as the faithfulness of information revealed.
Guided by this function, our system can effectively search for
optimal rendering parameters to produce a desired result.

5.1 Quality of Depth Perception
This section introduces a quantitative approach based on the
X-junction model and TAP for measuring the quality of the
perceived depth ordering in a volume rendered image.

5.1.1 X-Junction Detection
Junction points are required by the X-junction model to
determine how a user perceives the relative spatial depth
between two semi-transparent structures. We employ a well-
established algorithm based on color signatures [30] to identify
X-junction points on an image because of its simplicity and
decent performance. Color signatures can represent distribu-
tions of features and better characterize the appearance of
an image [29]. A color signature is a set of ordered pairs
{(x1,v1),(x2,v2), · · · ,(xn,vn)}, where vi indicates a vector in
a color space and xi is the weight of vi. Compared with
histograms with fixed bins, color signatures adapt to the data

and they do not arbitrarily partition the color space. One color
signature can represent a set of feature clusters in one area.
In the following, we briefly describe the X-junction detection
method. See [30] for a more detailed description.

The basic idea of the algorithm is as follows. Given a
preliminary image, the algorithm examines every pixel of the
image. It repeatedly splits the neighboring region of a certain
pixel (see the red pixel in Figure 4(d)) at different orientations.
For every split, each half of the region is represented by one
color signature. If the region is split by the green dash line
(see Figure 4(d)), then each color signature contains only one
feature cluster. If the region is split by the blue dash line
(see Figure 4(d)), there are two feature clusters for one color
signature. The algorithm employs the measurement based on
Earth Mover’s Distance (EMD) to estimate the perceptual
color distance between neighboring color signatures. The
farther the two color signatures are, the stronger strength
(EMD value) a certain direction has. The orientation with the
maximum EMD value is most likely to be a real edge.

The abnormality of EMD values can help to identify
junction points. Abnormality represents the minimum EMD
value at a certain pixel. The two color signatures are identical
(EMD is equal to zero) at an orientation normal to an ideal
edge (see the horizontal blue line across the central red point
in Figure 4(d)). Due to inhomogeneous spatial distribution
of colors, the minimum EMD (the abnormality) at an edge
pixel is never exactly zero in practice. Ruzon and Tomasi
[30] suggest that when the abnormality at an edge pixel is
abnormally high compared with its neighborhoods (within its
5X5 grid) the pixel should be a junction.

Although this method can effectively detect junction points
on an image, it has to compute color signatures for every
pixel in the image, which is time consuming. To remedy
this problem, we first extract the contours with Canny Edge
Detector, and then search along the contours for junction
points with high abnormality. When we identify a junction, the
surrounding regions of the junction can be easily obtained by a
region growing method since we have already known the edges
(boundaries of the regions) near the junction. To illustrate, in
Figure 2(b), there is one region for feature A, one for feature
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Fig. 4. (a) Illustration of ed1 . The green and orange curves represents the wrong Z configuration (ii) and the correct
Z configuration (iv), respectively. The blue point connecting the green curve to the orange curve indicates the A
configuration (iii). (b) Illustration of ed2 . The black curve denotes the correct C configuration (v). When d2→ 0, which
means 1

d2
→ ∞, the ed2 approaches 0.5. (c) Illustration of the Metelli’s model. (d) Illustration of the junction detection.

B, one for empty space, and one for the overlapping region of
A and B. Thus, if the neighboring pixels of any given pixel
can be classified into the four regions, it can be regarded as
an X-junction point. Additionally, we can determine the depth
relation between features A and B of the junction point by
casting a ray into the overlapping region.

5.1.2 Depth Ordering
We formulate an energy term called depth ordering to measure
the perceptibility with respect to the depth ordering of semi-
transparent structures. This formulation requires an accurate
identification of junction configuration types in accordance
with the depth perception models described in Section 4. We
start with an X-junction and examine its four surrounding
regions to determine a corresponding junction configuration.
Different energy values are assigned to different junction
configurations. The minimum energy indicates a scenario in
which depth information can be correctly conveyed, while the
maximum energy indicates an ambiguous scenario. Assume
that object A is in the front of object B in Figure 2 (a). Areas
p and r belong to object A, and areas q and p belong to object
B. We define five luminance situations based on the luminance
configuration of p, q, r, and s.

i. Wrong C configuration: the luminance descending order
is l(s)> l(q)> l(p)> l(r). In this situation, the object B
in the back is brighter than the object A in the front,
such that B appears to be in the front, thus misleading a
viewer. The overlapping area p is brighter than r, even
though it belongs to the same object as r does. When the
opacity and luminance values of A and B are changed, l(r)
and l(q) will be changed accordingly. The overlapping
area p will be affected by both the changes in A and B.
During the ray-casting process, the opacity and luminance
values of this area are accumulated in each sample point
along the rays that are going through object A and B.
If the front object is darker than or equal to the back
object, the overlapping area p will always be darker than
area r. In other words, area p is always the darkest area
in the X-junction given that B is brighter than or equal
to A. Thus, in semi-transparent volume rendering with
raycasting, situation (i) will never happen.

ii. Wrong Z configuration: the luminance descending order
is l(s)> l(q)> l(r)> l(p). Figure 2 (e) shows a wrong Z
configuration where B is brighter than A, thus leading to
Z ambiguity that cannot be handled by the TAP theory. To
resolve this ambiguity, the luminance of object A should
be increased (l(r) ↑) and/or the luminance of object B
should be decreased (l(q) ↓).

iii. A configuration: the luminance descending order is l(s)>
l(q) = l(r) > l(p). By changing the luminance value of
object A and/or B, once l(q) = l(r), we could be trapped
in A ambiguity (see Figure 2 (b)). In this case, we must
continue to adjust the luminance values by increasing l(r)
and decreasing l(q) to leave the A configuration.

iv. Correct Z configuration: the luminance descending order
is l(s) > l(r) > l(q) > l(p). By further increasing the
luminance of object A and/or decreasing the luminance of
object B, we obtain correct Z configuration when object
A is brighter than object B. As shown in Figure 2 (c),
TAP proves that human beings can figure out the correct
depth ordering in this situation. In this stage, we need to
inspect the luminance of area p. If l(p) is no longer the
darkest area, the descending order of the four areas in the
X-junction changes to that of the correct C configuration.

v. Correct C configuration: the luminance descending order
is l(s)> l(r)> l(p)> l(q). This configuration is consis-
tent with the X-junction theory and viewers can correctly
figure out the real depth ordering. However, if the contrast
between the areas is too weak for human beings to notice,
it is a weak C configuration. A strong C configuration with
high contrast is preferred.

In situation (ii), (iii) and (iv), l(p) is not needed for
calculating the energy value of the depth term. We only com-
pare the luminance value between l(r) and l(q). A wrong Z
configuration can convey incorrect depth ordering information.
Thus, it is worse than an A configuration. The energy value
of the wrong Z configuration should be higher than that of
the A configuration. A correct Z configuration, on the other
hand, is better than the A configuration. Thus, the correct Z
configuration has a lower energy value. In situation (v), we rely
on the descending order of the local luminance to derive the
depth order of the objects. In a correct C configuration, which
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conveys correct depth ordering, the luminance differences, i.e.,
|l(s)− l(r)|, |l(r)− l(p)|, and |l(p)− l(q)|, should be high
enough for human beings to perceive readily. Higher contrasts
of luminance between areas are preferable. Thus, a strong and
correct C configuration has the lowest energy value.

Based on the observation, only l(r) and l(q) are involved
for measuring the energy in situation (ii), (iii), (iv) , while all
l(p), l(q), l(r), l(s) are involved in situation (v). Therefore,
we can divide the energy function into two parts, which can
be expressed by a piecewise-defined function.

• In the first part, by adjusting the luminance of object A
and B, the situation is changed between (ii), (iii), and
(iv). We inspect the luminance of p to ensure that it is
the darkest area. Note that l(p) is not involved.

• In the correct Z configuration, once the luminance of
p becomes higher than that of q, the energy function
switches to the second part for the correct C configu-
ration. Note that l(p) is involved.

The energy value for the whole function ranges from 0 to 1
and can be divided into two parts subsequently, i,e., into two
ranges (0.5,1) and (0,0.5).

For the first part, only the contrast d1 between r and q, i.e.,
d1 = l(r)− l(q),d1 ∈ (−1,1) affects the energy value. We use
the hyperbolic tangent function: y= tanh(x)= (ex−e−x)/(ex+
e−x) to estimate the first part energy for situations (ii), (iii), and
(iv), as illustrated in Figure 4 (a). With this function, we can
easily model the rapid changes of the energy from situation (ii)
to (iv) via (iii). The first part of the energy function ranging
from 0.5 to 1 can be formulated as

ed1 =
3
4
+

1
4

tanh(−d1) =
3
4
+

1
4

tanh(l(q)− l(r)) (1)

When l(r) = l(q), we have y = 3/4 as a constant anchor point
for the A configuration. When l(r)< l(q), we have y∈ (3/4,1)
for the wrong Z configuration. When l(r) > l(q), we have
y ∈ (1/2,3/4) for the correct Z configuration.

As for the second part (the correct C configuration), the
junction showing weak contrast should have a higher energy
value than the junction showing strong contrast. In other
words, the higher the contrast, the lower the energy value.
The contrast of an X-junction can be estimated as the average
luminance difference between l(s), l(r), l(p), and l(q). The
average luminance difference can be determined by

d2 =

√
‖l(s)− l(r)‖2 +‖l(r)− l(p)‖2 +‖l(p)− l(q)‖2

3

The second part of the energy function can be calculated by

ed2 =
1
2
· tanh(

1
d2
−1) (2)

Figure 4(b) illustrates this function. In this function, the energy
value decrease smoothly with d2 when the contrast d2 is low,
and decrease dramatically with d2 when the contrast d2 is
high. When d2 = 0, ed2 = 0.5. When d2 = 1, ed2 = 0. Thus,
the function is more sensitive to the changes of higher contrast,
which allows the optimization to terminate earlier when the
junction has higher contrast.

With Equ. (1) and Equ. (2), the energy function for measur-
ing the quality of depth ordering perception of an X-junction
i can be defined as

ed(i) =

{
ed1 , if l(q) ≥ l(p).
ed2 , otherwise.

(3)

Let n j be the number of X-junctions in a volume rendered im-
age. The image quality in terms of depth ordering perception
can be formulated as

Ed(Ω) =
1
n j
∗

n j

∑
i=1

ed(i) (4)

where Ω indicates the parameter space.

5.2 Transparency

Transparency is regarded as an important factor in the opti-
mization process. It plays an important role in the perception
of depth ordering of semi-transparent structures. In our op-
timization, we enhance the perception of depth ordering by
adjusting feature opacity in the transfer function. Hence, we
change the transparency perceived by users to achieve our
goal. For instance, Figure 3 (a) is a volume rendered image
in which three semi-transparent structures are present with
misleading depth information. If we optimize the image by
adjusting the transparency without any constraint, the likely
result is shown in Figure 3 (b), in which the bottom-left
structure becomes almost transparent and unrecognizable. To
address this problem, we formulate an energy term to measure
the difference between the perceived transparency of the image
before and after each opacity adjustment.

Using the general raycasting technique of volume rendering,
we add up the opacity value until it is completely opaque
based on this formula: T (s) = exp(−

∫ s
0 τ(t)dt). This formula

can represent the physical properties of the volume. However,
it cannot reveal how a user’s visual system perceives trans-
parency [22]. Thus, using only a physical model is insuffi-
cient for measuring the perceptual quality of transparency. To
address this problem, we also use a perceptual model called
Metelli’s episcotister model [23] to evaluate the perceived
transparency. In Figure 4 (c), A and B form a bicolored
background with a semi-transparent disk T in the front. This
disk is perceptually separated into regions P and Q by the
background. This perceptual model is defined as follows:

p = αa+(1−α)t

q = αb+(1−α)t

α =
p−q
a−b

(5)

where a, b, p and q are the reflectances of the respective
regions, and t is the reflectance of the transparent layer T .
We use luminance instead of reflectance, because luminance
is more intuitive for the human visual system, and many
physical situations can be combined to form a single mapping
from reflectance to luminance [1]. The perceived opacity is
interpreted as 1−α . We measure the variation of the feature
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opacity using the following equation:

Et(Ω) =
1
n
·

n−1

∑
i=0
‖α ′i −αi‖ (6)

here n is the number of features, and αi and α ′i indicate the
original perceived opacity and the adjusted opacity of the ith

feature in the volume, respectively. Using this energy term,
we can largely maintain the feature transparency perceived by
users. Figure 3 (c) and (d) show two optimized results where
both depth and transparency information are preserved.

5.3 Image Faithfulness
Image faithfulness is another energy term that we establish for
optimizing image quality. Merely preserving visual properties
of structures in a volumes is insufficient because information
can be lost during optimization. Information on an optimized
image should be consistent with that of the original im-
age. Figure 3 (c) shows an example in which information
is discarded, although the perception of depth is enhanced
with only a minimal change in transparency perception. We
use an information-theoretic measure to quantify the image
faithfulness (or image similarity). Specifically, we employ
the conditional entropy method to measure how faithful the
optimized image is to the original version.

Conditional entropy has been widely used in image pro-
cessing, computer vision, and pattern recognition for image
registration and comparison [13]. Let X be a discrete random
variable with support X and Y be a discrete random variable
Y with support Y . In information theory, the conditional
entropy H(Y |X) for Y given X can be measured by

H(Y |X) = ∑
x∈X

p(x)H(Y |X = x) = ∑
x∈X

∑
y∈Y

p(x,y)log
p(x)

p(x,y)
.

where p(x) is the probability mass function of outcome x
and p(x,y) is the joint probability of outcomes x and y. We
can assume that X represents the original image and Y
denotes the adjusted image. Thus, p(x) denotes the probability
distribution of grey value x ∈ [0,255] in image X [26], and
p(x,y) represents the joint distribution of grey values x and y.
To estimate p(x), we convert X to greyscale and then build
a histogram of the greyscale image to obtain p(x). The joint
distribution p(x,y) can be obtained by converting X and Y
to greyscale and then build a two dimensional joint histogram
for the two greyscale images. Lower H(Y |X) indicates that X
shares more similarity with Y . Thus, to preserve information
during optimization, we minimize the conditional entropy
H(Y |X). We normalize the conditional entropy and obtain
the energy term for image faithfulness, Ee(Ω). Using this
image faithfulness term, we can preserve information during
the optimization process. Figure 3(d) shows a result generated
while taking image faithfulness into account.

5.4 Optimization
We can derive the total energy for a volume rendered image
using a weighted sum of depth, transparency, and image
faithfulness energy as follows:

E(Ω) = ∑wd ·Ed(Ω)+wt ·Et(Ω)+we ·Ee(Ω). (7)

where wd , wt , and we represent the weights for each energy
term. These weights can be flexibly adjusted by a user to meet
his specific requirement. The higher a weight a user assigns,
the more important role the associated energy plays during
optimization. In our experiments, we found that wd = 3, wt =
1, and we = 1 produce desirable results that can enhance the
depth ordering perception while the transparency and image
faithfulness levels are largely preserved. With the total E(Ω),
we can transform the image quality enhancement problem into
an optimization problem by minimizing the total energy.

Finding a global optimum of the energy function is very
difficult because an analytical form of the function cannot be
easily derived. One solution is to perform stochastic search
rather than exhaustive search in the parameter space. However,
stochastic search algorithms are usually expensive and do not
always converge to an optimal solution. We employ a nonlinear
conjugate gradient method to solve the problem [12]. The
transfer function can be first defined as a mixture of Gaussians

T (x) = ∑
i

αiGµi,σi(x)

where Gµi,σi is a Gaussian function with µ and σ denoting the
mean and the standard deviation, respectively. This Gaussian
mixture model allows for creating good transfer functions
without the appearance of aliasing artifacts using only a
few parameters. Thus, the parameter space Ω is defined as
{αi,µi,σi, li : i ∈ [1 · · ·N]} for N Gaussian functions where li
represents the lightness associated with Gaussian i.

Our method searches for the optimal solution iteratively in
the parameter space following a greedy mechanism

Ωn+1 = Ωn + γnΛn

where Λn represents the search direction in the space that can
reduce the energy. If we let Λn =−∇E, the method becomes
a steepest descent method that iteratively searches for the
optimal solution in the direction opposite to the gradient of
the energy. However, this method converges slowly and can
get trapped in a local minimum. Our method can address these
problems by searching in the direction conjugate to the ones
previously explored and resetting the search direction to the
steepest direction when only little energy is reduced.

6 EXPERIMENTS

We have conducted experiments on a PC with a 2.40 GHz
Intel Core(TM)2 Quad CPU, 3GB of memory, and an NVIDIA
GTX 280 graphics card with 1GB of memory. We tested
four types of datasets to demonstrate the usefulness of our
perception-based approach to improving volume visualization.
Ray-casting volume rendering was used to generate image
results. We fixed the rendering resolution at 512×512 in our
study. Depending on the sizes of the volume data, the time
needed to create the following results ranged from 5 seconds
to 20 seconds.

In our first experiment, we tested our approach with a
simulated protein molecule dataset (Neghip). We started by
rendering a semi-transparent isosurface with the initial lumi-
nance and opacity level. As shown in Figure 5 (a), the spatial
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Fig. 5. Experiment on an Neghip volume. (a) An original image in which the depth relations between structures are
misleading. (b) An image enhanced by our optimization approach based on merely the depth ordering energy. (c)
An image enhanced by our optimization approach based on both the depth ordering and transparency energy. (d)
An image enhanced by our optimization approach based on the depth ordering, transparency, and image faithfulness
energy. (e) Illustration of two X-Junctions in (a). The X-junction in the orange rectangle shows a weak C configuration.
The other in the green rectangle reveals an Z configuration. (f) Illustration of two selected X-Junctions in (d).

(a) (b) (c) (d)

Fig. 6. Experiment on a brain tumor volume. (a) An original volume rendered image without any enhancement. (b)-
(d) Images enhanced using only the depth energy, both the depth and transparency energy, and all three depth,
transparency, and information energy, respectively.

relations between objects are rather confusing. Clearly, it is
difficult for a user to discern the correct depth ordering in the
bottom two pairs of objects. Regarding the top objects, users
may incorrectly perceive that the smaller sphere surrounded by
two big spheres is in the front. According to the X-junction
model, all these ambiguous and misleading cases can be auto-
matically identified. Figure 5(e) illustrates two representative
X-junctions. The one in the orange rectangle conforms to the
C configuration. However, the contrast between region q and
region p is too low to be clearly observed by the human visual
system. To better convey the depth ordering, the approach
increased the luminance value of the front feature and decrease
the luminance value of the back feature to adjust region p,

resulting in an enhanced C configuration (see Figure 5(f)).
Let lp, lq, lr, and ls denote the luminance values of region p,
q, r, and s, respectively. The X-junction in the green rectangle
conforms to the A configuration in Figure 5(e). We can see that
lp is the lowest one, while lr is higher than lq. Since region r is
brighter than region q, observers can still perceive the correct
depth order based on the TAP theory. To achieve better result,
the approach increased lr and decreased lq. We also increased
lp, such that lp > lq. This results in arranging the luminance
of the four regions in an order as follows ls > lr > lp > lq, thus
conforming to the C configuration, as shown in Figure 5(f).

The original depth energy value in Figure 5(a) computed
by our measure is 0.71, indicating that the perceived depth
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(a) (b) (c) (d)

(e) (f)

Fig. 7. Experiment on a Vortex volume. (a) An original volume rendered image in which spatial relations between
structures are unclear. (b) An image enhanced by making the structures in the front more opaque, which is undesired.
(c) An image enhanced by adjusting the structures in the front to be less opaque, considering both the depth ordering
and the transparency perception. (d) An image enhanced by the optimization approach taking into account all depth
ordering, transparency, and image faithfulness energy in the optimization process, thus creating a desired result. (e)
Illustration of two selected X-junctions in (a) showing the weak C configuration which should be strengthened. (f)
Illustration of two selected X-junctions in (d) showing the strong C configuration.

order in this volume rendered image was regarded as being
inconsistent with the real depth ordering. Our quantitative
optimization framework remedied this problem by iteratively
searching for better rendering parameters to reduce the energy
value. Figure 5 (b) shows an optimized result with a lower
energy value 0.33. From this result, we can see that the depth
ordering of the objects is much clearer. However, the perceived
transparency was greatly changed from Figure 5 (a), and the
computed transparency energy for Figure 5(b) is 0.73, which
indicates that the transparency level was greatly altered from
the original one. Thus, we added one more constraint for
transparency to the optimization to ensure that the change
in transparency could be minimized. Figure 5 (c) presents
the new result, in which the depth order is clear and the
transparency is similar to Figure 5 (a). However, Figure 5(c)
is still suboptimal. Due to the changes in luminance and
opacity, the information displayed in Figure 5(c) is less than
that of Figure 5(a). We can see that the detailed shape
information revealed by shading in Figure 5(a) is missing in
Figure 5(c). After adding the information constraint to the
optimization process, we obtained a satisfactory result, shown
in Figure 5(d). In this figure, we can see that the depth ordering
of spatial objects is clear, while the transparency level and the
amount of information are maintained. The computed energy
values are 0.40, 0.07, and 0.08 for the depth, transparency,
and information energies, respectively. From this experiment,
we see that our method can effectively optimize the quality of
volume rendered images. Table 1 shows the measured energy
at each step (Figure 5(a)-(d)) of the optimization for the depth,
transparency, and image faithfulness, respectively.

The second experiment demonstrates how our technique

TABLE 1
Energy optimization of Neghip dataset

Image Depth Transparency Image faithfulness
Figure 5(a) 0.7104 Ø Ø
Figure 5(b) 0.3312 0.735 0.1328
Figure 5(c) 0.3978 0.039 0.1177
Figure 5(d) 0.4035 0.073 0.0819

may be applied to medical volume visualization. Direct vol-
ume rendering has been widely used in medical diagno-
sis and pre-surgery planning. However, presenting multiple
semi-transparent structures in an image to a doctor without
enhancement may increase the risk of making an incorrect
decision caused by the ambiguity in depth ordering. Figure 6
shows a medical volume (a brain tumor dataset with size
256×256×60). Figure 6(a) shows a typical scenario using
a transfer function, in which the depth relation between the
blood vessel and the tumor is unclear. It would be difficult for
a doctor to identify the correct depth order of these tissues.
This problem can be addressed using our method. Figure 6(b)-
(d) present three enhanced results using only the depth energy,
both the depth and transparency energy, and all three depth,
transparency, and information energy, respectively. Clearly, the
depth order in these results are unambiguously revealed (the
blood vessel is in the front). We can see that the image quality
of Figure 6(c) and (d) are better than in Figure (b). Overall,
Figure 6(d) has the best image quality because it displays the
same information as Figure 6(a), using a similar transparency
level, while conveying a clear depth ordering.

The third experiment shows the usefulness of our approach
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(a) (b) (c) (d)

Fig. 8. Experiment on an astrophysical simulated dataset. (a) An original volume rendered image without any
enhancement. (b)-(d) Images enhanced using only the depth energy, both the depth and transparency energy, and all
three depth, transparency, and information energy, respectively.

using flow visualization in a vortex dataset (128×128×128).
In flow visualization, it is often the case that multiple semi-
transparent, overlapping structures are shown simultaneously.
Incorrectly perceived depth orderings may lead to totally
different analysis results. Figure 7(a) shows an original volume
rendered image. It has nested structures. Structures with higher
intensity values are wrapped by structures with lower intensity
values. Figure 7(e) illustrates two X-junctions selected from
Figure 7(a). Although these two junctions have the correct
C configuration, the average luminance differences of p, q,
r, and s in these two junctions are very small, resulting in
two weak C configuration. Therefore, depth relations appear
quite ambiguous in this image; users may incorrectly perceive
that the larger structure (in light blue) in the center is behind
its neighboring green layers. Figure 7(b) presents a result
enhanced only using depth energy. After we increased the
opacity and luminance of the light blue structure, the depth
order was clearly revealed but came at the cost of changes in
transparency and information. We remedied the transparency
issue by taking into account the quantitative transparency
change in the optimization process, thus creating Figure 7(c),
which has a similar transparency level to Figure 7(a). We
further enhanced Figure 7(c) by preserving information faith-
fulness, such that the amount of information revealed in Fig-
ure 7(d) is similar to that of Figure 7(a). Figure 7(f) illustrates
the X-junctions selected from Figure 7(d) that have higher
average luminance differences of p, q, r, and s. Therefore,
after the enhancement the X-junctions conform to the strong
C configuration. This experiment demonstrates the use of our
technique in flow visualization to enhance perceptual image
quality and to prevent misleading information representation.

Finally, we also tested our technique using a simulated as-
trophysical dataset (600×600×600). This type of data usually
contains sophisticated structures with many semi-transparent
structures, making it challenging for users to analyze using
traditional transfer functions. Figure 8(a) shows a typical
volume rendered image from the data. In this image, it is
unclear whether the sphere structure is in the front or in the
back. Figure 8(b)-(d) show several intermediate steps of our
optimization process. Figure 8(b) is the result of improving

the depth ordering of the structures. Clearly, the sphere is in
front of all of its neighboring structures. However, this result
is undesirable because the appearance of the sphere changes.
We subsequently optimized for transparency and information
faithfulness using our techniques and created the results shown
in Figure 8(c) and (d). In the final result (Figure 8(d), we can
see that the perception of depth ordering has been improved
while transparency and information levels are well preserved.
This experiment shows how our system can be applied to
enhance the perception of depth ordering in astrophysics data.

7 USER STUDY

With the X-junction model and TAP theory, we have developed
a method for enhancing the perception of depth ordering by
automatically adjusting the opacity and lightness in volume
rendering. We conducted a user study to analyze whether the
depth perception is improved with the enhancement.

7.1 Hypotheses
To conduct the user study, we made two hypotheses:
• Hypothesis 1: Our approach improves the accuracy of

depth ordering perception.
• Hypothesis 2: Our approach allows users to spend less

time on perceiving the depth ordering.

7.2 Participants
We recruited 12 participants (7 females, 5 males; 6 with
glasses, 6 without glasses) on campus. Two of them are
designers and the remaining 10 are students studying in-
formation visualization(3), visual analytics(2), economics(2),
statistics(2), and biochemistry(1). We avoided using subjects
who have worked on volume visualization to guarantee that
all subjects have no prior knowledge about the depth ordering.

7.3 Study Design
A quantitative user study was designed to validate the effec-
tiveness of our method on different kinds of volume datasets
including medical data (brain tumor) and scientific simulated
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Fig. 9. A snapshot of the task window. The volume
rendered image is shown on the left window. Individual
features of the volume data are shown on the right, from
which, the subject is asked to select the feature perceived
to be in front with one click.

data (simulated astrophysical dataset and neghip dataset).
These datasets cover representative feature types and structures
found in volume visualization, which allowed us to assess
the general applicability of the two models. We conducted
a between-subjects study by having each subject tested only
once per image for either the enhanced or the original result.

Figure 9 shows a snapshot of the task window. The volume
rendered image is shown on the left window. Its individual
features are shown on the right, from which, the subject
was instructed to select the feature perceived to be in front
with mouse click. The subjects received a short tutorial (two
minutes in general) before the experiment.

During the experiment, each subject was exposed to five
images from different kinds of datasets. The order of the
images was randomized. For each image, either the enhanced
version or the original version was randomly shown. In that
way, we could exclude the effect of learning, since each subject
is tested only once either with the enhanced version or the
original version for each image. The time subjects spent for
each image was recorded. Finally, we had 60 cases (12 subjects
× 5 images): 30 enhanced cases and 30 original cases. For
each case, we collected the following attributes:
• The group it belongs to (enhanced or original group).
• The answer for depth ordering (correct or incorrect).
• The time that a subject spent in the case (in millisecond).
We did the whole study using the same monitor to avoid

the color distortion problem on different monitors. All the
subjects were asked to make an intuitive decision. Before the
user study, the subjects knew nothing about the X-junction
model and TAP model. Thus, they could not guess the answer
that they thought the researchers preferred. They did not know
the real spatial relationship until they finished the whole study.

7.4 Results
The results can be summarized as a contingency table (Table 2)
with its two rows corresponding to the group of enhanced
images and the group of original images, respectively. As it

was a frequency distribution of events, the χ2 test might be
employed for analyzing the result [16]. However, our sample
size was small. Since the approximation of χ2 test is not
suitable for small sample size, we applied Fisher’ s exact test
instead of the χ2 test. The Fisher’ s exact test was designed
for analysis of contigency table with small sample size [3].

TABLE 2
The correctness of different groups

Group Correct Incorrect Correctness Proportion
Enhanced 23 7 76.7%
Original 10 20 33.3%

As shown in Table 2, 76.7% cases in the enhanced group
perceived the real depth ordering, while only 33.3% cases in
original group got the correct spatial relations. The relative
performance of the original group compared to the enhanced
group was 33.3%/76.7%= 0.43. We were 95% certain that an
original image had 43% the chance of conveying correct depth
perception as an enhanced image using the approximation
of Katz. The two-sided P value by Fisher’ s exact test was
0.0016 which meets P < 0.01, considered very significant.
Hypothesis 1 could be accepted at significance level 0.01.

The results of the experiment confirm that the depth per-
ception was improved significantly in the enhanced group. We
have succeeded in introducing the X-junction model and TAP
model to volume visualization. By adjusting the opacity and
lightness parameters slightly based on these theories, it was
much easier for users to perceive the correct spatial relation .

A contingency table was used to compare the categorical
variables (correct and incorrect). For the continuous time
variable, we used t test to find if there was difference between
the enhanced group and original one [15]. The mean time user
spent on recognizing depth ordering in the enhanced group
was 6983.3 milliseconds (σ = 3920.7). For the original group,
the mean time was 7154.5 milliseconds (σ = 5803.3). The
two-tailed P <= 0.8940 which did not met P < 0.01. We did
not find statistically significant difference between the average
time for decision making of each group. We cannot accept
Hypothesis 2 based on these results and this sample size.

The results of the t test showed that our method did not
speed up the progress for the users to perceive the depth.

8 DISCUSSION

Our approach enhances a volume rendered image by optimiz-
ing its associated transfer function, which is defined as a mix-
ture of Gaussians. It is certainly possible to optimize transfer
functions that are defined by other parametric models such
as triangular and linear ramps, as our general optimization
method based on conjugate gradient search is not constrained
to the Gaussian mixture model. Our approach does not create
a new transfer function from scratch and an initial transfer
function is required to start the optimization. While there
exists methods for automatically creating transfer functions,
our methods can be regarded as an important complement to
them for enhancing the quality of their results.
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We use a well-established image-based method to detect
junctions in a volume rendered image. Alternatively, one could
project the individual 3D structures to an image and then
identify the junctions based on this information. Unfortunately,
this requires that the volume data be first segmented, which
may limit the use of our approach. The results of our junction
detection method could be affected by the initial transfer
function. If the preliminary image created by the initial transfer
function does not show any X-junction (for example, all
structures are set to be opaque), our approach will not enhance
the image since the image does not have ambiguity to resolve
according to the depth perception models.

Our approach uses luminance of different semi-transparent
structures to determine the quality of the image. In the
optimization process, it adjusts the luminance and opacity
of the structures through the transfer function to improve
the image quality because of the following reasons. First,
luminance is regarded as one of the primary visual cues for a
viewer to perceive the depth ordering and transparency in the
field of psychology. Most widely-used quantitative models of
depth ordering and transparency perception are solely based
on luminance. Second, although other visual cues would be
helpful for enhancing depth perception, they usually introduce
additional overheads. For instance, illustrative visual cues such
as halos would not only occlude the background objects but
also lead to fuzzy or unclear boundaries of the front objects.

The perception models have some limitations. For instance,
the X-junction model and the TAP theory can only deal
with two semi-transparent layers each time that overlap one
another. Nevertheless, this does not affect the effectiveness
of our approach, since the complicated cases with more than
two overlapping semi-transparent layers can still be handled
by the models such that the layers are analyzed pair by
pair. Another limitation of the models is that they cannot
handle layers of other spatial relations such as the enclosing
and separate relations. For enclosing structures, we cannot
enhance the correct depth ordering perceptually by adjusting
the contrast of luminance. We do not know of any quantitative
depth perception models that can deal with these relations.
Nevertheless, our technique is still useful because the over-
lapping semi-transparent layers widely exist in direct volume
rendering. Finally, some real-world volumetric structures may
have very complex depth relations with intertwined structures
where there is no a definite “front” and “black” object. As our
optimization is based on individual junctions, our approach
enhances the image locally at each junction, which might
lead to a consistency problem. We plan to further investigate
this issue in our future work. One feasible solution to the
inconsistency problem is to improve the energy function.

Our approach could be used to enhance an animation. One
straightforward solution is to optimize each frame of the an-
imation using our enhancement approach. Unfortunately, cer-
tain successive frames might appear incoherent since they are
enhanced independently. Furthermore, enhancing all frames of
the animation by our approach is quite expensive. To overcome
these problems, we can first identify the key frames in the
animation and then optimize only the key frames using our
approach. Other frames can be enhanced using the parameters

obtained by interpolating the parameters of the keyframes.
The interpolation method can usually help to reduce the
incoherency between successive frames. In the future, we
want to improve our optimization approach to enhance the
key frames simultaneously rather than independently to totally
eliminate the coherency issue.

9 CONCLUSION AND FUTURE WORK

This paper introduces three quantitative perception models,
including X-junctions, TAP, and Metelli’s episcotister, from
visual psychology to estimate how a viewer perceives the
depth ordering and transparency of semi-transparent structures
in volume data. Guided by these models, rendering parameters
can be effectively optimized to produce volume rendered
images complying with viewers’ perception, in which struc-
tures are faithfully revealed. These models can also provide
good indications of depth and transparency perception of the
images. Therefore, the expressiveness of the images can be
adaptively enhanced by additional illustrative visual cues. The
experimental results have demonstrated the effectiveness and
usefulness of our approach. Importantly, these results also
show the potential of the interdisciplinary research of visual
perception theory and visualization.

It has been reported that color and contrast may play
a role in depth perception of spatial structures [25], [37].
Some heuristic guidelines have been suggested for choosing
appropriate color and contrast for providing visual depth cues.
Therefore, one possible future direction is to use color and
contrast as additional visual cues, such that the perception
quality of structures holding not only the “overlapping” re-
lation but also other spatial relations can be improved. The
use of the quality enhancement framework is not limited
to only direct volume rendering. The whole optimization
pipeline as well as the energy function designed for semi-
transparent structures can be easily adapted to other computer
graphics applications such as the CAD design involving semi-
transparent structures. Our current approach does not assume
user interaction. However, it is certainly possible to adapt our
approach for interactive visualization using GPU acceleration.
Although there might be some frame-to-frame coherency
issue, this could be resolved by improving the energy function
to include a coherency term. We plan to further study this.
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