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Abstract—Direct volume rendered images (DVRIs) have been widely used to reveal structures in volumetric data. However, DVRIs

generated by many volume visualization techniques can only partially satisfy users’ demands. In this paper, we propose a framework

for editing DVRIs, which can also be used for interactive transfer function (TF) design. Our approach allows users to fuse multiple

features in distinct DVRIs into a comprehensive one, to blend two DVRIs, and/or to delete features in a DVRI. We further present how

these editing operations can generate smooth animations for focus þ context visualization. Experimental results on some real

volumetric data demonstrate the effectiveness of our method.

Index Terms—Direct volume rendering, image editing, intuitive user interface, morphing, transfer function design, focusþcontext,

animation.

Ç

1 INTRODUCTION

VOLUME Visualization helps people gain insight into
volumetric data using interactive graphics and imaging

techniques. The data from real applications such as medical
imaging and computational fluid dynamics often contain
multiple complex structures. Due to the occlusion of 3D
objects, revealing all these structures and presenting their
3D relationships in one image is very challenging. A widely
used technique to address this problem is Direct Volume
Rendering (DVR). By assigning different transparency
values to the voxels of volumetric data via transfer functions
(TFs) and then compositing them into Direct Volume
Rendered Images (DVRIs), DVR can reveal more information
than traditional surface-based rendering. However, the
effectiveness of DVR largely depends on the TF used.
Appropriate TFs allow users to reveal important features in
the data, whereas inappropriate ones may obscure these
features. Finding appropriate TFs is difficult in practice.
One major reason is that the search space for finding TFs is
huge even for one-dimensional (1D) TFs, not to mention
multidimensional TFs. In most cases, finding a good TF
becomes a tedious and time consuming trial-and-error
process. Some excellent automatic or semiautomatic ap-
proaches have been developed, but this issue is far from
being completely resolved [32].

For the end users of visualization systems, such as
physicians, who may not have much experience in volume
rendering and TF design, a user-friendly approach that
allows them to intuitively explore volumetric data is very
desirable. Physicians usually prefer to directly work on
2D slice images rather than in the TF domain, as this is how
they are trained in medical schools. Thus, it is more

straightforward for them to identify features in 2D slice
images. On the other hand, some 3D structures can be more
easily identified in DVRIs than in 2D gray-scale slice images.
Therefore, it is more intuitive and convenient for users to
directly work on DVRIs. Usually, a number of partially good
DVRIs can be easily generated by previous volume visualiza-
tion methods [17], [29]. These DVRIs may only partially
satisfy a users’ demands. For example, some DVRIs may
contain too much context that should be removed, and some
features that appear in different DVRIs should be combined
into one comprehensive image to reveal their spatial relation-
ships. Based on this observation, some DVRI editing
operations such as fusing features from different DVRIs,
blending two DVRIs, and erasing unwanted features in
DVRIs, may be very useful in practice.

Editing DVRIs is not a trivial problem. There are two
straightforward solutions: to use traditional 2D image editing
operations or to generate new DVRIs by linearly combining
several TFs. However, they both fail to achieve our goals in
most cases. The traditional 2D image editing operations do
not work for our purpose. Compared with traditional images,
DVRIs have some special features. Traditional images
usually show objects in a real-world setting, thus opaque
surfaces are often presented, whereas DVRIs are used to
reveal information contained in 3D volume data so multilayer
transparent surfaces are usually displayed. In some DVRIs
containing fuzzy structures, there are even no clear surfaces.
Therefore, we may get some artificial or physically incorrect
images instead of DVRIs and some unexpected artifacts may
be introduced if we directly apply traditional editing
operations to DVRIs. For example, if we directly blend two
DVRIs by alpha blending, the resulting image may miss
depth cues and introduce misleading information [1]. The
linear combination of the TFs may not work either. This
would mainly be attributed to the nonlinear operations of the
integration used in DVR. For example, given two DVRIs and
their corresponding TFs (see Figs. 1a and 1b), if users want to
reveal features appearing in both Figs. 1a and 1b by the linear
combination of the TFs, they can only obtain something like
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Fig. 1c no matter what�and� are, which is far from what they
expect as in Fig. 1d. As there are other features, such as the
intestines and muscles between intensity d1 and d2 (see the
TFs in Fig. 1), the linear combination in this example does not
work.

In this paper, we propose a general and robust framework
for users to directly edit DVRIs. We focus on images
generated by full DVR, as they are more general and complex.
Thus, we do not consider other DVRIs such as MIP and x-ray
style images in this paper. The system first transforms the
DVRI editing problem to an optimization problem with an
energy function created for each editing operation. The
energy function is based on the image similarity values
between the target DVRI and the source DVRIs. Then, a
stochastic search algorithm is used to search for the TF that
can generate a desirable DVRI by minimizing the energy
function. Genetic Algorithms (GAs) are particularly effective
for searching out good solutions when the search space is
huge and poorly understood and, therefore, are utilized to
solve the optimization problem. As contour is one of the most
important perception clues for 3D structures, our system
exploits a contour-based approach to objectively evaluate the
image similarity values.

The uses of our framework are twofold: as an image
editing tool and as an interactive TF design method. For
users without expertise in TF, our system is a Photoshop-
style editing tool for DVRIs, whereas TFs are only used
internally and will not be exposed to users. For expert users,
our system can show the generated TF, which can be further
edited or manually fine-tuned by users. As a TF design
method, our system allows users to interactively and
intuitively design TFs from simple to complex by gradually
editing simple DVRIs into comprehensive ones.

Our approach contains some advanced characteristics. To
the best of our knowledge, we are the first to propose a
framework for directly editing features in DVRIs. In contrast
to the traditional 2D image operations, our system can
produce DVRIs without losing depth cues and introducing
incorrect information. Compared with the linear combination
of TFs, our approach is more general and robust. As DVRIs
contain more information and can better reveal 3D structures
than 2D image slices, directly editing DVRIs is more intuitive
and convenient for users than the traditional operations on
2D image slices [40]. With the framework, we are able to
circumvent the time-consuming and nonintuitive TF design
and manipulation process by allowing users to fuse multiple

features in distinct DVRIs into a comprehensive one, to blend
two DVRIs, and to delete features in DVRIs without knowl-
edge of the TF. As a semiautomatic method, our approach
integrates user knowledge into the framework. Since the
visualization goal highly depends on the tasks and users, our
system can gain valuable input from users through the
features they select and the editing operations they apply.
Based on the DVRI editing operations, some advanced
applications such as focus+context visualization with anima-
tion can be developed.

In our previous papers [51], [52], we proposed how to
fuse features in different DVRIs and how to achieve
focus+context visualization with animation. In this paper,
we present a framework that is more general and can
include more editing operations such as deleting and
blending. To facilitate users to select features to edit, we
integrate two semiautomatic feature selection tools, lazy
snapping [24], and intelligent scissors [31] into our new
system. We also introduce a method to edit DVRIs
generated from different viewpoints. In addition, we
describe how our method can facilitate TF design for expert
users. More experimental results on real data have been
conducted to demonstrate the effectiveness of our method.

This paper is organized as follows: After reviewing
previous work in Section 2, we give an overview of our
system in Section 3. DVRI editing operations and their
corresponding energy functions are described in Section 4.
We then present the image similarity metric in Section 5 and
the TF producer in Section 6. After that, we demonstrate
how the fusing operation can be used to facilitate TF design
for expert users in Section 7.1 and how the blending
operation can be exploited to generate animations for focus
þ context visualization in Section 7.2. Experimental results
and discussions are presented in Section 8. We present our
conclusions and suggest some future work in Section 9.

2 RELATED WORK

2.1 Feature-Based Visualization

Weiskopf et al. [48] proposed several interactive clipping
methods by exploiting the powerful capabilities of Graphics
Processing Unit (GPU). Viola et al. [42] developed a novel
importance-based approach for focus þ context volume
visualization, which was recently extended to allow
automatic focusing on features in a volume [41]. Volume
illustration techniques [3], [7], [22], [34], first introduced by

1028 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2007

Fig. 1. (a) and (b) Source images 1 and 2 and their TFs, TF1 and TF2. (c) DVRI rendered with a linearly combined TF: TF3 ¼ �� TF1þ � � TF2,

where � ¼ 0:3 and � ¼ 1. (d) DVRI rendered with our method by fusing (a) and (b).
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Rheingans and Ebert [35], provide an alternative way for
focus þ context visualization with abstraction techniques
(for example, nonphotorealistic rendering). Bruckner and
Gröller [3] and Correa et al. [7] proposed new volume
manipulation techniques for illustration and visualization.
Krüger et al. [22] presented a context preserving hotspot
visualization technique to help users interactively visualize
a volume data set. Wang et al. [45] developed an interactive
GPU-assisted volume lens to magnify the regions of interest
(ROI) while preserving the context by compressing other
volume regions. Kim and Varshney [15] used a visual
saliency-based operator to draw users’ attention to the focus
regions in a volume.

2.2 Transfer Function (TF) Design

An excellent survey on TF design can be found in [16]. There
are two main categories of TF design methods, that is, image-
centric methods and data-centric methods [32]. Marks et al. [29]
developed an image-centric system that automatically gen-
erates many perceptually different images and organizes
them efficiently for users to select. Kindlmann and Durkin
[17] presented a histogram data structure to semiautomati-
cally obtain good TFs with user guidance. The images
generated by both approaches can be used as inputs to our
system. Ma [28] proposed a novel approach based on image
graphs to facilitate visual data exploration. König and Gröller
[21] developed a TF design interface paradigm that provides
several specification tools for each search domain. Although
previous methods [21], [28] allow users to linearly combine
TFs, they cannot always get the expected results (see Fig. 1).
Kniss et al. [20] extended Kindlmann and Durkin’s work by
introducing different TF widgets and a novel dual-domain
operation. More recently, �Sereda et al. [44] presented a novel
TF design method based on LH histograms, which can more
easily distinguish features than the traditional histograms.
Tory et al. [39] employed a parallel-coordinate-style interface
to facilitate the exploration of TFs. Taking human factors into
consideration, their method employs a history bar to help
users backtrack to previous TF settings. Lum et al. [26]
proposed an interactive multiscale TF design technique using
filter banks that is particularly effective for classifying fuzzy
or noisy features. Our method is based on the similarity of the
rendered images and thus is an image-centric method.

2.3 Genetic Algorithms

Genetic algorithms are widely used in many fields like
computer graphics [37]. He et al. [11] first employed GAs to
generate TFs. Our approach is inspired by their work, but
aims at editing DVRIs rather than designing TFs from
scratch. Compared with He et al.’s approach, our approach
is based on image similarity and user knowledge (or user
voting). Users are allowed to control which features are to
be retained or enhanced in the DVRIs. House et al. [12] used
a GA to choose visualization parameters to optimize
visualization quality.

2.4 Animated Visualization

Gagvani et al. [10] proposed a skeleton-based approach for
volume animation. Their work was further extended by
Chen et al. [5] with a novel spatial TF to specify deformation
in volume animations. Lum et al. [27] presented an

impressive visualization technique called Kinetic Visualiza-
tion for creating motion along a surface to facilitate the
understanding of static transparent 3D shapes. Weiskopf
[47] described some relevant psychophysical and physiolo-
gical findings to demonstrate the important role of color in
the perception of motion. Correa and Silver [6] proposed a
new data traversal approach for volumetric data with
motion-controlled TFs. Three perceptual properties of
motion: flicker, direction, and velocity have been thor-
oughly examined by Huber and Healey [13] in an
experimental study. Although there has been growing
interest in animated visualization, most previous works
either aim at enhancing the perception of 3D shapes and
structures of static objects [6], [27] or focus on evaluating
some general motion attributes [13], [47]. Using animation
for focus þ context visualization is still an unexplored area.

3 SYSTEM OVERVIEW

Fig. 2 shows the overview of our system. With this system,
users are able to intuitively manipulate the features in
DVRIs rather than in the complex TF domain. It allows
users to fuse multiple features in distinct DVRIs into a
comprehensive one, to blend two DVRIs, and/or to delete
features from a DVRI.

Fig. 2a is the user interface of our system including the
source DVRIs and their TFs, the target DVRIs and their TFs,
and a history region. The source TFs represented as their
corresponding DVRIs in the history region can be generated
by any semiautomatic or automatic TF design approaches
[17], [29]. Users can import the source DVRIs and their TFs
from the history region at the bottom of the user interface
by a simple drag-and-drop operation. For nonexpert users
who are only interested in editing DVRIs, the TFs can be
totally hidden from them because they do not need to
directly operate on the TFs. The interface allows users to
identify features in the source DVRIs with rectangles or
other semiautomatic feature selection tools (see the red
rectangles in the source DVRIs in Fig. 2a). Users can give
each DVRI a different score ranging from 0 to 1. These
scores can be viewed as the expected similarity values
between the target DVRI and the source DVRIs. After that,
our system begins to search for the target DVRI taking the
expected similarity values into account.

Fig. 2b is the system architecture that consists of energy
function generator, TF producer, direct volume renderer, and
image similarity evaluator. Energy functions are used in
stochastic search algorithms like GAs to evaluate the fitness
of the candidate/intermediate solutions, which are gener-
ated in the optimization process. The energy function
generator shown in Fig. 2b is a critical part of our
framework. It aims at automatically creating an appropriate
energy function based on users’ editing operations on
DVRIs. The generated energy function is then passed to the
TF producer. The TF producer generates a number of
intermediate TFs (candidate/intermediate solutions) using
stochastic search algorithms and sends the intermediate TFs
to the direct volume renderer for rendering corresponding
intermediate DVRIs, which are then sent to the image
similarity evaluator. The image similarity evaluator com-
putes the image similarity value between each intermediate
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DVRI and the source DVRIs and passes the value back to
the TF producer. With the image similarity value, the
energy function in the TF producer can compute the energy
value of the intermediate TF. The smaller the energy value,
the fitter the intermediate TF. Based on these energy values,
the TF producer eliminates the unsuitable TFs and gen-
erates new and fitter TFs to begin the next cycle of
refinement. When the stochastic search algorithm used in
the TF producer converges, the system outputs the final
DVRI rendered with the best found TF.

4 EDITING OPERATIONS AND ENERGY FUNCTIONS

Our system supports the following editing operations:
fusing multiple features in distinct DVRIs into a compre-
hensive one, blending two DVRIs into a DVRI with correct
depth cues, and deleting certain features in a DVRI. These
editing operations can be used together. For example, users
can remove a feature from a DVRI and meanwhile fuse the
DVRI with others.

As our system generates DVRIs using stochastic search
algorithms, an energy function for evaluating the fitness of
candidate solutions should be formed after users specify
editing operations in DVRIs. In our system, we exploit an
energy function based on image similarity and editing
operations to objectively evaluate the fitness of intermediate
TFs. Using the energy function, we are able to transform the
DVRI editing problem to an optimization problem, that is,
minimizing the energy function.

In this section, after discussing feature selection, we first
introduce these editing operations and their corresponding
energy functions. We assume that the source DVRIs are all
rendered from the same viewpoint to simplify the pre-
sentation. Then, we present how to combine these editing
operations together and how to extend our method so that
these editing operations can be applied to DVRIs generated

from different viewpoints. To simplify the presentation, we
introduce the following terms: Source image for the source
DVRI to be edited; Target image for the resulting DVRI after
editing; Source TF for the TF of the source image; and Target
TF for the TF of the target image.

4.1 Feature Selection

Our approach allows users to select desirable features in
DVRIs to edit using rectangles or semiautomatic feature
selection tools. Some features can be easily selected by
directly drawing a rectangle around them. However, when
the feature to be chosen is very close to other features, it
cannot be simply selected using a rectangle. To solve the
problem, we need accurate and quick feature selection
tools. Fortunately, feature selection is one of the most
widely studied problems in image processing and many
excellent methods are available. To ease the task of selecting
features with complex shapes, we use two semiautomatic
feature selection tools, lazy snapping [24], and intelligent
scissors [31] for our system. Lazy snapping can automati-
cally snap the contour to the boundary of the feature with
several paintings to indicate the inside and outside of the
feature, whereas the intelligent scissors are able to trace the
contour of the wanted feature using simple gesture motions
with mouse. In our experiments, we found that lazy
snapping can select a desirable feature faster than intelli-
gent scissors, but intelligent scissors are more flexible and
more capable of selecting only a part of the feature instead
of the entire one. With the feature selection tools, our
system can allow users to select a region containing the
feature and this region will then be converted into a mask
(see Fig. 5b) within which our image similarity evaluator
performs. As our system employs a contour-based image
similarity metric to evaluate the fitness of candidate TFs,
and the contours of features are finally determined by
Canny edge detector, users are not required to trace the
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Fig. 2. The overview of our framework. (a) User interface that consists of source DVRIs and their TFs, target DVRI and its TF, and a history region.

(b) System architecture that consists of energy function generator, TF producer, direct volume renderer, and image similarity evaluator.
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contours of the feature exactly as long as the contours are
inside the mask region, and the mask region does not
contain a significant amount of contours from other
features.

4.2 Fusing Operation

The fusing operation is used to combine multiple user-
selected features that appear in different DVRIs into a
comprehensive one. To apply this operation, users first
identify and select multiple features from distinct DVRIs
and vote for each feature or a whole DVRI to indicate their
preference. The system then automatically generates a
comprehensive DVRI containing all these selected features
according to the votes. Each vote represents how much they
would like a selected feature to be retained in the resulting
DVRI. The energy function for the fusing operation is given
as follows:

F1 ¼
Xn
k¼1

Vk � jVk � Skj; ð1Þ

where n is the number of source images, Vk represents the
vote (or the score) given by users for the feature in source
image k, and Sk denotes the computed image similarity
value between the target image and the source image k.
Both Vk and Sk ranges from 0 to 1. A more detailed
definition of Sk can be found in (5) in Section 5. Vk, from
another point of view, can be also considered as the
similarity value expected by users between the target image
and source image k. Vk also penalizes the difference
between the computed similarity Sk and the user-voted
(or user-expected similarity) value Vk. It can guarantee that
the target image gets proportional contributions from all the
source images and is not dominated by any single one.
Fig. 3 shows an example of fusing multiple features in

distinct DVRIs (see Figs. 3a, 3b, 3c, and 3d) into three target

DVRIs (see Figs. 3e, 3f, and 3g) with different user votes.

4.3 Blending Operation

The blending operation is used to composite two DVRIs
and generate a similar resulting image from alpha blending.
In contrast to the traditional image blending operation, our
DVRI blending operation can ensure the generation of true

DVRIs. Compared with other artificially blended images,
DVRIs usually contain correct depth cues and have less
misleading information because DVR composites samples
in depth sorted order. The energy function for the blending
operation is defined as

F2 ¼ �1 � j�1 � S1j þ �2 � j�2 � S2j; ð2Þ

where S1 and S2 are the computed image similarity values
similar to Sk in (1), and �1 and �2 represent the alpha values
used for blending. The blending operation can also be
viewed as a special case of the fusing operation, that is, to
fuse two whole DVRIs without user-selected features into a

comprehensive DVRI according to the alpha values �1 and
�2. Fig. 4c is a DVRI generated by blending Figs. 4a and 4b
with �1 ¼ �2 ¼ 0:5 using our system.

4.4 Deleting Operation

The deleting operation allows users to remove extra
features from a DVRI by selecting what they want to retain

or to remove using lazy snapping (see Fig. 5a), a rectangle,
or intelligent scissors. Suppose users want to remove
several features in region A of a DVRI, and the rest of the
DVRI is denoted as region B. The energy function for the
deleting operation is given as follows:

F3 ¼ S1 þ ð1� S2Þ; ð3Þ

where S1 is the computed image similarity value between
the target image and the source image within region A, and
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Fig. 3. The fusing operation: (a), (b), (c), and (d) Source DVRIs.
(e) Target DVRI generated with V1 ¼ 0:7, V2 ¼ 0:3, V3 ¼ 0:4, and
V4 ¼ 0:6. (f) Target DVRI generated with V1 ¼ 0:5, V2 ¼ 0:5, V3 ¼ 0:5,
and V4 ¼ 0:6. (g) Target DVRI generated with V1 ¼ 0:3, V2 ¼ 0:7,
V3 ¼ 0:6, and V4 ¼ 0:4.

Fig. 4. The blending operation. (a) and (b) Source images with bone and

skin, respectively. (c) Target image generated by blending (a) and (b)

using our system.

Fig. 5. The deleting operation. (a) A DVRI where the skin is to be

removed. (b) Mask created from (a) using lazy snapping. (c) Resulting

DVRI after executing the deleting operation.
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S2 is defined the same as S1, but within region B. To
minimize the energy function in (3), S1 should be minimum
and S2 should be maximum, that is, the target image should
look similar to the source image within region B, but differ
from the source image within region A. Fig. 5 shows an
example of the deleting operation. Lazy snapping is used to
select features. Users select the feature to be retained by
drawing several strokes (the yellow paintings in Fig. 5a)
indicating the inside region of the feature and several
strokes (the blue paintings in Fig. 5a) indicating the outside
region. The other features will be removed. Fig. 5b is the
mask obtained from lazy snapping. Fig. 5c is the resulting
DVRI generated by our system.

4.5 Mix Multiple Editing Operations

Our system enables users to mix different basic operations
together. For example, users can fuse multiple features in
distinct DVRIs together and can meanwhile remove certain
features from some DVRIs. To achieve this goal, we propose
to use a comprehensive energy function F as follows:

F ¼ F1 þ F2 þ F3; ð4Þ

where F1, F2, and F3 are the energy functions defined in (1),
(2), and (3) for the fusing, blending, and deleting operations,
respectively.

4.6 Editing Features from Different Viewpoints

Viewpoint selection is an important issue in scientific
visualization [2], [38]. Appropriate viewpoints can reveal
more 3D structures and enhance the comprehensibility of the
data, whereas bad viewpoints may deliver less informative
results and may even present misleading information. Thus,
it is advantageous and important for the system to allow users
to edit features in DVRIs rendered from different viewpoints
and then render the result from a good viewpoint so that more
informative results can be revealed at the same time. Our
framework can be easily extended to handle this situation.

Given n viewpoints and their corresponding DVRIs, our
system allows users to select a common good viewpoint
either manually or by some automatic viewpoint selection
approaches [2], [4], [38]. We then rerender the user selected
features from this viewpoint. For any unwanted features,
our system automatically removes them using the deleting
operation. After that, the basic DVRI editing operations can
be directly applied to these new DVRIs because they are
now generated from the same viewpoint. Figs. 6a and 6b are
two DVRIs rendered from different viewpoints and each of
them contains one salient feature, that is, the skin of the toes
and the heel bone, respectively. Fig. 6c is the result of
blending Figs. 6a and 6b from a suitable viewpoint where
all the salient features are clearly revealed.

5 IMAGE SIMILARITY

Image similarity is an important but difficult problem in
various fields of computer science. Many approaches have
been established to compute the similarity of two images.
They can be generally classified into three categories, that is,
spatial domain metrics, spatial-frequency domain metrics,
and perceptually-based metrics [53]. However, image
similarity evaluation is still an open problem and far from
being completely solved.

Most previous approaches have some nice properties
and advantages, but they also suffer from some drawbacks
and cannot work well in all situations. For instance, image
similarity methods using mutual information like [43] do
not consider neighborhood regions of corresponding pixels
and therefore ignore the spatial information inherent in
images. Peak Sinal-to-Noise Ratio (PSNR) and Mean
Squared Error (MSE) are two other widely used spatial
domain metrics. However, they fail to correlate well with
perceived similarity measurement [46] and are unable to
detect movement between pixels [33]. Recently, there has
been increasing interest in perceptually-based image com-
parison metrics such as Visual Differences Predictor (VDP)
[8], [49] and Visual Discrimination Model (VDM) [25].
Although they perform generally better than other meth-
ods, they are still not robust and suffer from difficulties in
finding a correct general Contrast Sensitivity Function (CSF)
representation that is used to calculate and weigh the errors
between the two signals to be compared [23]. It is observed
that none of the sophisticated methods can clearly surpass
those simple spatial domain metrics like PSNR under strict
testing conditions [46]. Moveover, they gain advantage over
those simple methods at the cost of time performance or
memory.

In order to strike a balance between performance and cost,
we develop a contour-based similarity metric to compare two
DVRIs. The contour is one of the most important perception
clues for 3D structures. It is able to simplify the representation
of an object while retaining significant features (that is, the
shape of an object). Thus, it can be used to compare the
similarity of objects. Our system first converts the DVRIs to
gray-scale images and detects the edge images from the gray-
scale images using the well-established optimal edge detector
—Canny edge detector. Since most contours appearing in the
DVRIs also appear in gray-scale images, our contour-based
metric still works well. To compare two edge images, a
straightforward method is to directly compute the differences
pixel by pixel. However, contours detected from DVRIs using
a specific TF may shift several pixels when the TF is slightly
changed. If we simply compare the images pixel by pixel, then
we cannot detect a pair of contours that look very similar, but
whose actual positions do not match perfectly (for example,
shifting one or two pixels). To handle this problem, we first
apply the Gaussian filter to smooth the edge images so that the
pixels without an edge covering can also obtain contributions
from the nearby edges. We set the size of the filter to be 5� 5
for 512� 512 DVRIs and 3� 3 for 256� 256 DVRIs. Then, we
can quickly compute the image similarity pixel by pixel.

The image similarity value Sk between the target edge
image and the source edge image k is computed as follows:
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Fig. 6. The editing operation on DVRIs generated from different

viewpoints: (a) and (b) Source images generated from different

viewpoints. (c) Target image generated by blending the user selected

features shown in (a) and (b).
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Sk ¼
Pheight

y¼1

Pwidth
x¼1 Qðx; yÞ

Nsource
; ð5Þ

Qðx; yÞ ¼ 1 if P ðx; yÞ < threshold
0 Otherwise;

�
ð6Þ

P ðx; yÞ ¼ jKðx;yÞ �K0ðx;yÞj; ð7Þ

where Nsource in (5) is the number of all pixels on the edges
of the source k’s edge image. threshold in (6) is a parameter
set by the system. P ðx; yÞ in (7) represents the difference
between two corresponding pixels. K and K0 are the
Gaussian filtered target and source edge images with
resolution ðwidth; heightÞ.

Notice that we consider only the pixels on the source
edge image k for Sk, that is, (5) is only computed if
K0ðx;yÞ 6¼ 0. Thus,

Pheight
y¼1

Pwidth
x¼1 Qðx; yÞ � Nsource and Sk in (5)

ranges from 0 to 1. If image similarity is only evaluated
within a mask region of the whole image, our system
considers only the pixels within this region. Thus, the
Nsource in (5) only counts the number of edge pixels within
this region.

To determine the default threshold in (6), we conducted
extensive experiments on real-volume data. All the edge
images generated are 8-bit gray-scale images. From the
experiments, we found that when the threshold ranges from
60 to 90, desirable results can be achieved. Based on this, the
default value of threshold is set to be 80 in our system,
which can be adjusted by users.

6 TRANSFER FUNCTION PRODUCER

The TF producer is the most important component in our
system. It is used to generate TFs for desired DVRIs based
on the energy function created by the energy function
generator.

6.1 Genetic Algorithm

A Genetic Algorithm (GA) is a search algorithm imitating the
process of natural evolution [30]. It is particularly useful for
searching solutions to optimization problems, especially
when the search space is huge and unknown. It can also
quickly find a sufficiently good solution, which may not be
the global optimum. To use GAs, candidate solutions to a
specific problem must be represented as genomes such as
binary encodings, tree encodings, or floating number
encodings. Similar to natural selection and natural genetics,
the algorithm initially creates a possible set of genomes
called a population or generation. The population evolves
with the crossover (or reproduction) operator and the mutation
operator over multiple generations and generates better and
better genomes. The pseudocode for the GA used in our
system is shown in Algorithm 1.

Algorithm 1. Simple Genetic Algorithm

1: Randomly create an initial population of n genomes
(encoded TFs)

2: repeat

3: repeat

4: Select a pair of genomes from the current population

using the roulette wheel scheme as source genomes

such that fitter (or better) genomes are more likely to

be chosen
5: Crossover (two-point crossover) the selected pair with

probability pr or exactly copy (or clone) the pair with

probability 1� pr to form two new genomes

6: Mutate the two newly created genomes with mutation

probability pm
7: until n new genomes (offsprings) have been created

8: Replace the current population with the n new genomes

9: until Terminating conditions such as the converging of
the GA are met

6.2 Initial Population

The initial population of the algorithm can be treated as an
initial guess of the desirable results. As the following
evolution is based on the initial guess (that is, the following
populations evolve from the initial population), the initial
population may greatly affect the performance of the
algorithm. An appropriate one may make the algorithm
converge early and obtain the desirable results quickly.
According to our experiments, the GAs that begin with the
initial population created by the linear combination of the
source TFs with random weights can generally find the
desirable target TFs faster than those with a completely
random population. Our system therefore creates the initial
population by linearly combining the source TFs with
random weights.

6.3 Genome Representation

The solution encoder/decoder specifies the genome repre-
sentation by analyzing the source TFs. Aimed at defining
the optimal genome representations [30], our approach
represents a TF as a 1D array of floating-point numbers. For
the 1D source TFs, the component first smoothes the source
TFs using a Gaussian function to filter out the high
frequencies to obtain bandlimited signals. After that, it
samples TFs adaptively above the Nyquist frequency. The
samples are then used to specify the genome representation.
In addition, they can be used to restrict the search space to
improve the GA performance. For example, in Fig. 7, there
are two source TFs denoted by different line patterns. The
points on the axis of the scalar value are the union of the
sampling positions of the source TFs. The vertical dashed
lines start with 0 and end with the maximum opacity value
of the source TFs. They act as the range of opacity values of
the corresponding points on the axis of the scalar value. All
the opacity values at the aforementioned points (on the axis
of the scalar value) of each candidate target TF constitute a
genome.

Our system can also encode/decode 2D source TFs.
Fig. 8 shows the 2D source TFs constructed with the scalar
value and gradient magnitude of the volume. They are
based on Kniss et al.’s triangular classification widget
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Fig. 7. The genome representation for 1D TFs.
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(details can be found in [20]). Each inverted triangle widget
is used to distinguish a distinct feature. We assume that the
position and the shape of each widget does not change. As
opacity is maximal along the centerline of the widget and
linearly ramps down to both sides, the opacity distribution
within each widget can be represented by the maximum
opacity in this widget as a normalized real value ranging
from 0 to 1 [20]. Thus, we can denote the TFs with an array
of real numbers such as A, B, C, and D shown in Fig. 8,
indicating the opacity distribution of each widget. Each
element of the array is bounded from 0 to 1. The genome
representation for this case is thus the union of all such
arrays without any overlap.

6.4 Selection Scheme

The selection scheme determines how to choose genomes in
the current population to produce offsprings. The selection
scheme in GAs imitates natural selection in such a way that
better (or fitter) genomes are more likely to survive and be
selected to produce their offsprings. The selection has to strike
a balance between a too-weak and a too-strong selection (or
between “exploitation” and “exploration”) [30]. A too-strong
selection makes the suboptimal genomes dominate the
population and the evolution converge too early, whereas a
too-weak selection leads to a too-slow convergence. Many
different selectionmethods havebeendevelopedto avoidtoo-
strong selections and too-weak selections in the GA commu-
nity. Our system employs one of the most commonly used
selection schemes called roulette wheel.

6.5 Evolution Operators (Crossover and Mutation)

Crossover combines two source genomes with probability
pc to produce two new offsprings in the hope of preserving
features of the parents. In our system, we use the two-point
crossover method, which selects two random positions on
each source and exchanges the segments between them.
After crossover operations, the GAs perform mutation for
each genome with low probability pm similar to natural
mutation. The purpose of the mutation is to increase the
diversity of the population without converging too early (or
premature convergence). For example, GAs usually tend to
converge to a local optimum while evolving. With the help
of mutation, GAs are more likely to get out of the local
optimum.

6.6 Parameters for GAs

It is important to appropriately set parameters such as
population size, crossover rate, and mutation rate for the
GAs so that the algorithms can perform well in practice.
However, these parameters are difficult to optimize due to
their nonlinear dependency. There are no general guidelines
regarding the setting of these parameters in different
situations. Early work by Jong [14] gives some suggestions

about the best parameters: the best population size is around
50 genomes; the best crossover rate is about 0.6; and the best

mutation rate is 0.01. These parameters are widely used.

7 APPLICATIONS

Our DVRI editing techniques can be used for various

applications like interactive TF design and focusþcontext
visualization.

7.1 Interactive Transfer Function Design

Our framework can be used not only as an image-editing tool
for nonexpert users, but also as an interactive TF design

method for users with expertise in TF design. As an image-
editing tool, our system hides the generated TFs from end

users who will only deal with DVRIs, whereas as a TF design
method, our system exposes the TFs to users, and the users

can directly manipulate them to gain insight into data. In this
section, we discuss our framework from the viewpoint of

TF design.
TF design is critically important and is a very challen-

ging issue in DVR. It has been a hot research topic in recent
years and many excellent approaches have been proposed.

Most of these approaches focus on reducing the search
space for ideal TFs and developing intuitive user interfaces.

However, the resulting TFs from these methods may still
not be good enough and further adjustments may be

needed. It is not intuitive for users to directly manipulate

TFs in the TF domain.
As it is relatively easier for users to generate good TFs for

different features of volumetric data, we propose TF fusing,

which merges several TFs into a comprehensive one, as a
new technique for TF design. Our TF design method is

based on fusing features in DVRIs. Suppose n TFs along
with the corresponding n DVRIs have been generated by

automatic or semiautomatic methods. Then, in each DVRI,

users can select features they want and vote for these
features to show their preferences. Then, the TF design

problem is converted to fusing features in different DVRIs
and the TF for the final DVRI is outputted as the

comprehensive TF that users look for.
Our approach has some advantages. First, we simplify

TF design by converting it into a TF fusing problem. Our
approach can design TFs from simple to complex, which
can be easily grasped by users. Our system is more intuitive
for users because they can work directly on DVRIs instead
of in the TF domain. Second, users are able to exploit
previous spent efforts represented as saved TFs to obtain a
better or comprehensive new TF. By allowing users to vote
for TFs and select ROIs in the images rendered by the TFs,
our system can gain valuable input from users and keep
desirable features in previous good TFs while subjugating
unimportant features in the data. Third, our method can be
used together with other TF design methods and may
complement their strengths. The output TFs from other
popular TF design methods such as semiautomatic TF
generation [17] or TF design galleries [29] can serve as
inputs to our method. These TFs can be fused with other
TFs such as manually tuned TFs by users to generate a
comprehensive TF for data exploration or presentation.

1034 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2007

Fig. 8. The genome representation for 2D TFs.
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7.2 Animation for Focus þ Context Visualization

In this section, we exploit the DVRI editing techniques to
generate animations for focus þ context volume visualiza-
tion. Our work is motivated by an interesting psychological
phenomenon—“bird in cage”—also called afterimage [36]. It
is closely related to the theory of persistence of vision, which
accounts for the illusion of motion in the film industry.
According to the theory, a visual image will persist in a
user’s brain for a short time after the real image has
disappeared from his/her eyes. Therefore, if we quickly
show a sequence of keyframes and intermediate frames
containing the focus and context, then the focus and context
can simultaneously appear in users’ brains and users can
figure out their 3D relationship. The spatial relationship
between the focus and the context is then revealed in the
animation process. To generate animations for DVRIs with
large transparent areas, depth cues and smooth transitions
are especially important for conveying correct information.
As mentioned before, if we directly apply traditional
animation techniques such as the alpha blending technique
to DVRIs, we may not get the correct depth cues and some
misleading information may be introduced [1]. To address
these problems, we propose a novel data-centric animation
technique using our DVRI editing framework for the
intermediate frame generation. As all frames including
keyframes and intermediate frames of animations are
generated by DVR, correct depth cues are provided and
misleading information is minimized. In addition, our
method applies the blending operation provided by our
framework to generate a sequence of intermediate frames
(DVRIs) from any two successive keyframes (DVRIs), which
can guarantee the smooth transitions between frames as the
operation itself is based on image similarity. We further
develop two animation editing techniques, level of detail
(LOD) and zoom in/out, to emphasize the focus frames and
suppress the context frames in the time domain of the
animation.

7.2.1 Similarity-Based Tweening between Keyframes

We assume that multiple keyframes and their TFs have
already been generated by users. These keyframes either
emphasize the focus or the context of the data. Suppose
that the TFs for two successive keyframes, P1 and P2, are
TFP1

and TFP2
, and the number of intermediate frames

between two keyframes is N . To tween between these
two keyframes, one straightforward solution is to linearly
interpolate the key TFs to obtain a number of inter-
mediate TFs, which can then be used to generate a
sequence of intermediate frames by DVR. For example,
the TF for the ith intermediate frame can be computed as
TFi ¼ ðN�iÞN � TFP1

þ i
N � TFP2

. However, as we mentioned
before, this approach may not get the expected results.
Based on our experiments with real data (see Figs. 15a,
15b, 15c, 15d, and 15e), this method cannot generate
smooth transitions between frames. As the compositing
operation used in volume rendering is nonlinear, the
smooth transitions between two TFs cannot guarantee the
smooth transitions between the resulting DVRIs.

To solve this problem, we propose a similarity-based
tweening technique using our blending operation. To
guarantee a smooth animation, for the ith intermediate
frame Pi, the similarity value between Pi and P1 should be

ðN�iÞ
N and the similarity value between Pi and P2 should be

i
N . In our data-centric method, we compute a series of
intermediate keyframes using the blending operation with
linearly changed � values.

7.2.2 Animation Editing

Each keyframe used in the animation usually contains only
one specific feature except in a few situations in which it is
difficult to separate that feature from other features. If there
are many features in the volumetric data, there will be a
number of keyframes in the animation. Thus, the total
number of frames including the keyframes and intermedi-
ate frames is too large, which makes it difficult for users to
focus on the frames containing the features they want to see.
To overcome this problem, we propose two techniques,
LOD and zoom in/out, to emphasize the important frames
while suppressing the context frames. The proposed
techniques are applied on the timeline of the animation,
which controls the display time of each frame.

In our paper, we apply LOD to the timeline of the
animation to make the exploration easier and more flexible
in a visualization process. Users are allowed to select
multiple successive keyframes and combine them into a
new keyframe using the fusing operation with different
user votes. After that, the system replaces these keyframes
with the newly combined keyframe for the animation.
Tweening is automatically generated for these new key-
frames. Users can perform this combination many times
until they obtain a satisfactory animation. In our work, we
mainly use the LOD technique to reduce the number of the
context keyframes.

After the context keyframes are clustered by the
LOD technique, users may need to further emphasize the
frames in which they are interested. In order to highlight
these focus frames, we apply a technique similar to the
fisheye-view approach [9] to the timeline of the animation,
which gives the important frames a longer display time and
reduces the display time for less important frames.

8 EXPERIMENT RESULTS AND DISCUSSIONS

Our system was implemented in C++ based on the
Visualization Toolkit (VTK) 5.0 library [18] and the code
provided by Kniss et al. [19]. We tested the system on a
Pentium(R) 4 3.2-GHz PC with 2 Gbytes of RAM and an
Nvidia Geforce 8800 GTX GPU with 768 Mbytes of RAM.
The sampling rate of DVR was two samples per voxel along
each ray. For the sake of performance, the rendered image
resolution was 256� 256 in the optimization process and
was then switched to 512� 512 for rendering the final
results. All features in this section were selected by users
using rectangles, lazy snapping, or intelligent scissors. For
features selected by lazy snapping (see Figs. 11 and 14),
yellow strokes are uniformly used to indicate the inside
regions of the features, whereas blue strokes the outside
regions. In the following experiments, we obtained suffi-
ciently good results within acceptable time frames (around
4 to 15 seconds).

8.1 Experiments for the Basic Editing Operations

To demonstrate the effectiveness of the basic editing
operations, we carried out several experiments on different
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volumetric data. Figs. 3 and 9 show two examples of the

fusing operation. Users are allowed to specify how much they

want the features in source DVRIs to appear in the resulting

DVRIs with different user votes. Thus, our approach, from

another point of view, can also be treated as an approach for

importance-based visualization. Users just simply select

some important features and provide an importance value

(the user vote) for each feature or the whole DVRI. Our

method then automatically generates an image revealing

these regions. The DVRIs in Fig. 3 were generated from a

computerized tomography (CT) human tooth volume data

(ð256� 256� 161Þ, whereas the DVRIs in Fig. 9 were

rendered from a CT carp data set ð256� 256� 512Þ.

We carried out the second experiment on a CT engine

data set ð256� 256� 128Þ to validate the effectiveness of the

blending operation. Figs. 10a and 10b are two DVRIs to be

blended with �1 ¼ �2 ¼ 0:5. Fig. 10c was created by the

traditional blending operation, whereas Fig. 10d was

generated in 7 seconds using our method. From the figures,

we can see that the result in Fig. 10d provides correct depth

cues. In contrast, some depth cues and the details inside the

engine are missed in Fig. 10c.
Our third experiment was for the deleting operation on

DVRIs. Fig. 11a shows one DVRI where features to be

retained were selected by users using lazy snapping. The

other features should be removed. Fig. 11b shows the

resulting image after the deleting operation.
Our system was also tested on a large volume data with

resolution 512� 512� 626, as shown in Fig. 12. Fig. 12c was

generated by blending Figs. 12a and 12b both with 0.5 scores

in 13 seconds.

8.2 Experiments for Transfer Function Design

We demonstrate that TFs generated by other TF design
methods can be fine tuned by our TF design method. In the
first example, we fused a TF generated by the semiauto-
matic method [17] and a TF tuned by users to make the
contours in the DVRI clearer. In the second example, we
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Fig. 9. Experiment on a CT carp data set. (a) Source image 1. (b) Source image 2. (c) Source image 3 with a user-selected feature indicated by a

rectangle. (d) Target image obtained by fusing features in (a) with 0.3 scores, features in (b) with 0.4 scores and the user-selected feature in (c) with

0.3 scores.

Fig. 10. Experiment on a CT engine data set. (a) and (b) Source images

to be blended. (c) Target image generated by the traditional blending

operation. (d) Target image generated using our proposed blending

operation.

Fig. 11. Experiment on a CT breast data set. (a) A DVRI with multiple

layers and features selected by lazy snapping. (b) Target image

generated by our editing system without the unwanted tissue.
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removed some unwanted features in the DVRI generated
from the semiautomatic TF design method and outputted
the resulting TF for further processing.

8.2.1 Make the Contours Clearer

The experiment on an magnetic resonance imaging (MRI)
head data set ð256� 256� 256Þ is to demonstrate that our
approach is able to generate a fused image containing the
user selected features with clearer contours. The image
shown in Fig. 13b was created by the semiautomatic TF
design method [17]. However, the semiautomatic method
could not easily obtain an image revealing the inner
structures of the head. Thus, we manually created an image
(see Fig. 13a) with a simple TF capable of revealing the
inner structures of the data. However, this image was not as
good as we expected, because the ear disappeared and the
inner structures like the brain were not clear enough. To
solve these problems, we specified the features to be
retained in Fig. 13a using intelligent scissors and features
to be retained in Fig. 13b with rectangles. After that, we
fused these features with V1 ¼ 0:6 and V2 ¼ 0:4. In the
fusing process, our approach favored only those candidate
images with clear contours within the specified regions.
Fig. 13c shows the result generated in 7 seconds.

8.2.2 Remove Unwanted Structures

Fig. 14a was generated by the semiautomatic TF design
method. However, there is a superfluous structure sur-
rounding the turtle, as the semiautomatic method views the
structure also as a feature. To remove it, users have two

choices. The first is to set the ambient gradient threshold
[17] bigger than 0 and the other is to manually fine tune the
generated TF in the TF domain. Obviously, setting the
threshold is a cumbersome job since users without expertise
may have to try many times to find a suitable threshold. On
the other hand, erasing it by directly manipulating TFs in
the TF domain may be an easy job for TF experts, but it is
not intuitive and may even be difficult for nonexpert users,
as they may not be familiar with the TF domain. In contrast,
our method can supplement the strength of this excellent
TF* design method, as it allows users to indicate which
features they want to retain or remove by lazy snapping
and our system can automatically remove the unwanted
features, which is quite straightforward.

8.3 Experiments for Generating Animations

Fig. 15 shows the differences of the tweenings generated by
different methods. Figs. 15p and 15q are the keyframes
indicated as keyframe1 and keyframe2, and Figs. 15a, 15b, 15c,
15d, and 15e were generated by linearly interpolating the
TFs of the keyframes (TF ¼ � � TF1 þ � � TF2, where � and
� are shown below the corresponding figures, and TF1 and
TF2 are shown in Fig. 15r). Figs. 15a, 15b, 15c, 15d, and 15e
fail to form smooth transitions from keyframe1 to keyframe2.
The change from Fig. 15a to 15b is too abrupt, and Figs. 15b,
15c, 15d, and 15e are almost the same as keyframe2 (Fig. 15p).
In an opposite manner, Figs. 15f, 15g, 15h, 15i, and 15j
generated by our data-centric method (that is, the proposed
blending operation) and Figs. 15k, 15l, 15m, 15n, and 15o
created by our image-centric method described in [51] have
smoother transitions between the successive keyframes.
Additionally, the tweening (Figs. 15f, 15g, 15h, 15i, and 15j)
generated by our data-centric method is the best among all
these methods. Fig. 15k and 15o make the morphing,
generated by the image-centric method, a bit abrupt and not
as good as that created by the data-centric method, since
they make the transition from keyframe1 to Fig. 15l and the
transition from Fig. 15n to keyframe2 rough. Moreover, the
images created by the data-centric method have richer
details and provide better depth cues than those created by
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Fig. 12. Experiment on a CT human body data set. (a) Source image 1.

(b) Source image 2. (c) Target image obtained by blending (a) and (b)

with 0.5 scores, respectively.

Fig. 13. Experiment on an MRI human head data set. (a) and (b) Source

images with user selected features. (c) Target image generated by

fusing the user selected features shown in (a) and (b).

Fig. 14. Experiment on a CT Turtle data. (a) A DVRI generated by the

semiautomatic TF design method with features selected by lazy

snapping. (b) Target image created by erasing other unwanted

structures.
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the image-centric method (see the regions selected by the
red curves in Fig. 15i and 15n).

8.4 Discussions

Our system works well for most volume data we tested.
However, as it uses a contour-based metric to evaluate the
similarity value, it may not be able to obtain desirable
results for volume data, which contain complex features
without well-defined contours. For example, we tested our
approach on a CT scan of a bonsai tree ð256� 256� 256Þ.
For the blending operation, our approach failed to generate
a good result like Fig. 16d and can only create some results
like Fig. 16c, which does not present the features in Fig. 16b.
This is because the leaves of the bonsai do not have clear
contours. To obtain a desirable result and avoid such
problem, we can choose the well-defined features having
clear contours instead of the original whole images and fuse

these features into a new image. With this trick, we selected
only the trunk of the tree in Fig. 16a and fused it with
Fig. 16b using our system and finally obtained the resulting
image shown in Fig. 16d.

Our system is able to use other existing TF design
methods as the front end. It can therefore take advantage of
existing research and can complement their strengths by
introducing some useful DVRI editing operations. How-
ever, our system also suffers from the drawbacks of those
methods. For instance, if the method which our system is
built on is not capable of revealing a specific feature, our
system cannot reveal that feature either.

9 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel framework based on
image similarity and GAs, which allows users to directly
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Fig. 15. Tweening between keyframes. (p) and (q) Keyframes. (a), (b), (c), (d), and (e) Intermediate frames created by linearly interpolating TFs of

the keyframes with different ð�; �Þ. (f), (g), (h), (i), and (j) Intermediate frames created by the data-centric blending operation with different (�1, �2).

(k), (l), (m), (n), and (o) Intermediate frames generated by the image-centric blending operation with different (�1, �2). (r) TFs of the keyframes.
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edit features in DVRIs and interactively design TFs. The
system provides users with three basic editing operations:
fusing multiple features in distinct DVRIs into a compre-
hensive one, blending two DVRIs into a DVRI with correct
depth cues, and removing features from a DVRI. Based on
these editing operations, smooth animations for focus þ
context volume visualization can be created. Our system
provides an intuitive method for users without expertise in
TF design to effectively explore volumetric data. The
framework is flexible and easy to extend. For example, the
GAs can be replaced by some other optimization algorithms
and the image similarity evaluator can use some other
image similarity metrics.

There are many possible venues for future work. Our
implementation was not highly optimized for performance.
The average runtime for the editing operations on the tested
volumetric data sets was around 7 seconds. We plan to
exploit GPU-accelerated GAs [50] and more advanced GPU-
based DVR techniques to further reduce the runtime of our
algorithm. Our energy function highly depends on the
image similarity metric, which is a complicated issue
involving human perception. The contour-based image
similarity metric may not work well for volume data,
which contain features without well-defined contours. We
plan to develop more sophisticated image similarity metrics
for complex transparent DVRIs and test them with more
real volume data sets. We will also investigate other DVRI
editing operations and integrate them into our framework.
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Feature Enhancement in Volume Visualization,” IEEE Trans.
Visualization and Computer Graphics, vol. 11, no. 4, pp. 408-418,
July/Aug. 2005.

[43] P. Viola and W.M. Wells III, “Alignment by Maximization of
Mutual Information,” Int’l J. Computer Vision, vol. 24, pp. 137-154,
1997.

[44] P. �Sereda, A.V. Bartrol, I.W. Serlie, and F.A. Gerritsen, “Visualiza-
tion of Boundaries in Volumetric Data Sets Using LH Histo-
grams,” IEEE Trans. Visualization and Computer Graphics, vol. 12,
no. 2, pp. 208-218, Mar./Apr. 2006.

[45] L. Wang, Y. Zhao, K. Mueller, and A.E. Kaufman, “The Magic
Volume Lens: An Interactive FocusþContext Technique for
Volume Rendering,” Proc. IEEE Visualization Conf., pp. 367-374,
2005.

[46] Z. Wang, A.C. Bovik, and L. Lu, “Why Is Image Quality
Assessment So Difficult,” Proc. IEEE Int’l Conf. Acoustics, Speech,
and Signal Processing, pp. 3313-3316, 2002.

[47] D. Weiskopf, “On the Role of Color in the Perception of Motion in
Animated Visualizations,” Proc. IEEE Visualization Conf., pp. 305-
312, 2004.

[48] D. Weiskopf, K. Engel, and T. Ertl, “Interactive Clipping
Techniques for Texture-Based Volume Visualization and Volume
Shading,” IEEE Trans. Visualization and Computer Graphics, vol. 9,
no. 3, pp. 298-312, May/June 2003.

[49] H.-C. Wong, H. Qu, U.-H. Wong, Z. Tang, and K. Mueller, “A
Perceptual Framework for Comparisons of Direct Volume
Rendered Images,” Proc. First IEEE Pacific-Rim Symp. Image and
Video Technology (PSIVT ’06), pp. 1314-1323, 2006.

[50] M.-L. Wong, T.-T. Wong, and K.-L. Fok, “Parallel Evolutionary
Algorithms on Graphics Processing Unit,” Proc. IEEE Congress on
Evolutionary Computation, pp. 2286-2293, 2005.

[51] Y. Wu, H. Qu, H. Zhou, and M.-Y. Chan, “Focus þ Context
Visualization with Animation,” Proc. First IEEE Pacific-Rim Symp.
Image and Video Technology (PSIVT ’06), pp. 1293-1302, 2006.

[52] Y. Wu, H. Qu, H. Zhou, and M.-Y. Chan, “Fusing Multiple
Features in Direct Volume Rendered Images,” Proc. Second Int’l
Symp. Visual Computing (ISVC ’06), pp. 273-282, 2006.

[53] H. Zhou, M. Chen, and M.F. Webster, “Comparative Evaluation of
Visualization and Experimental Results Using Image Comparison
Metrics,” Proc. IEEE Visualization Conf., pp. 315-322, 2002.

Yingcai Wu received the BEng degree in
computer science and technology from the South
China University of Technology, China, in 2004.
He is a PhD candidate in the Department of
Computer Science and Engineering at the Hong
Kong University of Science and Technology
(HKUST). His research interests are in medical
volume visualization and information visualiza-
tion. He is a student member of the IEEE and the
IEEE Computer Society.

Huamin Qu received the BS degree in mathe-
matics from Xi’an Jiaotong University, China, in
1988 and the MS and PhD degrees in computer
science from Stony Brook University (State
University of New York at Stony Brook), in
2000 and 2004, respectively. He is an assistant
professor in the Department of Computer
Science and Engineering at the Hong Kong
University of Science and Technology. His
research interests include medical visualization,

information visualization, and mobile graphics. He is a member of the
IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1040 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2007

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on September 15, 2009 at 04:37 from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


