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Fig. 1. SmartAdP system. (A) Dashboard View shows the information of the current solution for billboard placements. (B) Map View
provides a visual summary of the geospatial environment. (C) Solution Preview lists the parameters and statistics of the candidate
solutions. (D) Solution View lays out all the solutions as glyphs to reveal the relationships among the solutions. (E) Location View
supports in-depth analysis at the fine-grained location level. (F) Ranking View displays multi-typed ranks of the solutions.
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Abstract— The problem of formulating solutions immediately and comparing them rapidly for billboard placements has plagued
advertising planners for a long time, owing to the lack of efficient tools for in-depth analyses to make informed decisions. In this study,
we attempt to employ visual analytics that combines the state-of-the-art mining and visualization techniques to tackle this problem
using large-scale GPS trajectory data. In particular, we present SmartAdP, an interactive visual analytics system that deals with the
two major challenges including finding good solutions in a huge solution space and comparing the solutions in a visual and intuitive
manner. An interactive framework that integrates a novel visualization-driven data mining model enables advertising planners to
effectively and efficiently formulate good candidate solutions. In addition, we propose a set of coupled visualizations: a solution view
with metaphor-based glyphs to visualize the correlation between different solutions; a location view to display billboard locations in a
compact manner; and a ranking view to present multi-typed rankings of the solutions. This system has been demonstrated using case
studies with a real-world dataset and domain-expert interviews. Our approach can be adapted for other location selection problems

such as selecting locations of retail stores or restaurants using trajectory data.

Index Terms—optimal billboard locations, taxi trajectory, visual analytics, comparative analysis

1 INTRODUCTION

Billboards are the most common forms of outdoor advertising. Despite
the decline of other traditional advertising media, billboard advertis-
ing remains critically important, because people today are spending
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considerable time in transit. Billboard advertising has several evident
advantages like prominent visibility, low cost per mille, and superior
accumulation of local influence over other advertising methods.

However, launching a successful billboard campaign is difficult, be-
cause many factors should be cautiously considered, such as content
design, locations, and visibility. Among them, the geographical loca-
tions of billboards are considered the most critical. Appropriate bill-
board locations can increase audience exposure significantly, whereas
inappropriate ones lead to waste of time and investment. Conventional
approaches involve manually computing traffic volume, conducting
travel surveys, and inviting experts to build mathematical models [23].
As a result, this process is time consuming, less flexible, and can
be completed by professional advertising agencies only. Currently,
several famous outdoor advertising companies, such as APN [1] and
LAMAR [2], have provided online campaign planning tools that in-
clude billboard planners with comprehensive information of each bill-
board, such as the traffic statistics and demographics.

These tools enable planners to create and offer various tailored so-
lutions to their business customers; however, several limitations have
been identified. First, the acquisition of such comprehensive data is ex-
pensive, thereby limiting the data coverage. Second, the large solution
space with many advertising factors still poses difficulties for experts



in utilizing the tools to create proper solutions without leveraging the
computational power of machines. Third, in most cases, several can-
didate solutions need to be provided to customers. Since customers’
own criteria and expectations may vary significantly from one person
to another, they are in urgent need of tools that can help quickly dis-
tinguish the commonalities and differences among multiple solutions.
Unfortunately, existing tools cannot support this kind of analysis.

In this study, we attempt to employ visual analytics techniques to
overcome these limitations using taxi GPS trajectory data. We utilize
the taxi trajectory data for two reasons: (1) the data is relatively easy to
collect and provide citywide coverage in most cities; and (2) the large-
scale data can effectively reveal the underlying traffic patterns [8, 49].
To our knowledge, previous studies have not reported the use of taxi
trajectory data to address the billboard location selection and solution-
level comparison problems.

However, there are two major challenges in visual analytics of the
trajectory data: (1) dealing with a wide solution space to determine
the desired solutions; (2) creating an intuitive visualization to facili-
tate comparative analysis. A typical billboard solution involves a set
of locations. The solution space is almost infinite because of numerous
possible billboard locations in a city. Thus, the cost of searching for
an optimal solution under multiple criteria is prohibitively expensive.
Furthermore, a billboard location can be characterized by multiple
spatio-temporal attributes, such as traffic volume, speed, origins and
destinations (OD), and surrounding environment (e.g., points of inter-
est (POIs)). Visual comparisons among solutions can be viewed as
comparing different groups of locations, which are depicted by multi-
ple spatio-temporal attributes. Hence, creating a concise and readable
visual representation to facilitate comparison is non-trivial.

To deal with the huge space, we tightly integrate the knowledge
and expertise of humans with the computational power of machines.
In particular, we introduce a novel visualization-driven data mining
model based on a tailored application-specific data index mechanism
to efficiently generate billboard candidate locations. To enable effec-
tive visual comparison, we propose a set of coupled visualizations,
allowing users to compare solutions from multiple perspectives and
different levels of details. With these techniques, we develop a visual
analytics system called Smart Advertising Placement (SmartAdP) to
visualize and explore the heterogeneous urban data, such as taxi tra-
jectory data, POI data, and a citywide geospatial route network. Our
system can also be easily adapted to other applications with respect to
recourse allocation, such as retail chain location selections.

The major contributions of our study are as follows:

e A systematic characterization of the problem of billboard loca-
tion selection using taxi trajectory data, and a thorough discus-
sion and summary of the design requirements and space.

e An interactive framework to generate billboard solutions with
a novel visualization-driven data mining model and a tailored
application-specific data index mechanism.

e A set of new visualization techniques to empower end users to
explore the major features of multiple solutions and compare the
commonalities and differences among them.

2 RELATED WORK

This section discusses the prior studies closely related to our work.
Trajectory query processing has received considerable attention
in recent years. The queries on trajectories can be categorized into
three types, namely, the point, region, and trajectory query [12, 48].
Point query aims to find the points with an expected spatio-temporal
relationship to several given trajectories or retrieve the trajectories that
have a specific relationship with a few given points. Examples include
finding the k nearest neighbors to a path in road networks [9], or query-
ing for the nearest trajectories to a point [21]. Similar to point query,
region query seeks the trajectories within the specified spatio-temporal
regions or identifies the regions with a specific relationship to a set of
given trajectories. Examples include retrieving the most frequent path
between a user-specified OD [42], as well as discovering the gathering
patterns from trajectories [46]. Trajectory query focuses on search-
ing the trajectories that possess similar features within a given trajec-

tory set (i.e., classification or clustering [28, 29]). Our query can be
categorized as point query, which aims to find points (i.e., billboard
locations) within user specified regions that can cover maximum tra-
jectories. In our application scenario, users aim to highlight important
regions or trajectories while playing down other regions or trajecto-
ries. Hence, the query method should allow users to flexibly set differ-
ent weights for different regions or trajectories. However, identifying
optimal locations with millions of trajectories in real time is challeng-
ing due to the large search space and high algorithm complexity. To
our knowledge, the problem has not been systematically studied in the
areas of database and data mining. In this study, we present a novel
visualization-driven data mining model to support this kind of query,
in which users are allowed to participate in the improvement of the
quality and efficiency of query processing.

Billboard location selection is one of multicriteria decision mak-
ing (MCDM) problems in a spatial context [33, 34]. Before making
a choice, billboard campaign planners typically have to run appro-
priate trade-offs among multiple conflicting criteria. Karamshuk et
al. [22] demonstrate the power of computational methods (i.e., data
mining) to tackle the problem of optimal retail store placement by
using human mobility information (i.e., Foursquare check-in dataset)
and POIs. However, sometimes the optimal solution cannot be solely
generated by computer, as people always have their own opinions and
criteria. Exploratory visualization methods are commonly used to ad-
dress the problem and make a well-substantiated decision. As such,
several mechanisms of integrations of computational methods with in-
teractive visualization tools by multiple coordinated views have been
suggested [5]. Nonetheless, to our knowledge, there is little work
on combining data mining and visualization techniques to address the
problem of billboard location selection with taxi trajectory data.

Taxi trajectory visualization has been extensively studied and ap-
plied in traffic monitoring [43], mobility pattern discovery [16], route
recommendation [30], urban planning [19], and so on. Different from
the prior studies, our research focuses on solving the billboard loca-
tion selection problem by utilizing visual analytics techniques. In this
light, many trajectory visualization techniques [7, 8, 31] can be used.

Taxi trajectories can be viewed as a sequence of time-ordered
spatial points with multiple attributes. By leveraging point-relevant vi-
sual channels and animation techniques, trajectories can be intuitively
observed [38]. With the increase of points, one can use a heatmap to
show the integrated quantity of points in a map. Besides, researchers
propose several line-based aggregation visualization techniques to de-
pict traffic flow in a distributed network, such as density map [39]
and aggregation flow [6]. These techniques are capable of revealing
movement patterns intuitively. To depict both spatio-temporal infor-
mation and related attributes of taxis (speed, direction, and volume,
etc.), several space-time-cube based and radial metaphor based visu-
alizations are also introduced [30, 41]. However, these techniques are
not designed for visual comparison of complex advertising solutions
with dozens of billboards that possess special features, such as ge-
olocations, cost, and coverage. Therefore, these techniques cannot be
simply applied in our solution comparison task.

Visual comparison is one of the most fundamental and common
visualization tasks [24]. There are three widely-accepted categories
of visual comparison: juxtaposition (i.e., side by side), superposition
(i.e., overlay), and explicit encoding (i.e., visually showing differences
or correlations) [17]. Various visualization approaches have been de-
veloped on the basis of these three basic methods for different com-
parison tasks [40, 44]. For example, VisLink [10] links the same
objects in two juxtaposed visualizations. Kehrer et al. [25] use hi-
erarchically organized small-multiple displays (i.e., juxtaposition) to
compare multi-variate data comprising categorical and numerical in-
formation. They also support superposition and explicit linking in a
small-multiple display cell. Our work adopts a juxtaposition method,
allowing users to conduct multi-level and multivariate comparative
analysis. The work unifies three views, namely, the solution, location,
and ranking view, through explicit visual linking and user interactions
(Fig. 1(D, E, F)).



3 BACKGROUND

This section introduces the background on billboard advertising and
the types of data used. Thereafter, the analytical tasks are discussed.

3.1 Background Knowledge

Billboard location selection is a multidisciplinary research problem

that involves advertising, communication, and urban computing. In the

past year, we have been working with three experts in these fields. In
particular, one expert is a manager from an advertising agency who has
considerable experience in advertisement planning (EA), another one

is a postdoctoral researcher in communication (EB), and the third is a

senior researcher in urban computing (EC). EB and EC were invited

specially to solve the billboard location selection problem that was
originally proposed by EA.

As with the real estate business, billboard locations are considered
a decisive factor for a billboard campaign. However, different people
may have different opinions on locations. We run structured interviews
with EA for several rounds and summarize the main challenges for
billboard location selection as follows.
¢ Finding befitting areas to place billboards. The first step is to

determine several areas to place billboards based on customers’ re-
quirements. Areas frequently visited by the target audience are de-
sired. However, this type of information is difficult to gather. Thus,
planners from outdoor advertising companies often make recom-
mendations based on their own experience and knowledge.

o Selecting proper locations in the specified areas. Each specified
area contains numerous locations for placing billboards. Planners
have to spend considerable time on manually selecting proper loca-
tions from the locations in each area based on the basic information
of each location; such information includes, the surrounding POIs,
daily circulation, and cost. The best and worst locations are easy
to determine, but the ones in between are difficult to distinguish.
Moreover, the information on candidate locations is often incom-
plete. Furthermore, information on passers-by along the locations
is rather rare. Planners often obtain the information through field
studies or based on their own experience and knowledge.

¢ Evaluating a solution and convincing customers. Assessing a
solution still remains difficult. Field studies, such as those involving
the use of questionnaires, are usually conducted. Nevertheless, the
limited data and lack of appropriate tools have resulted in difficulty
in convincing customers who often have different criteria.

¢ Providing customers with multiple solutions. Planners have to
formulate multiple solutions and present them to customers. This
process frequently costs substantial time. To our knowledge, no
tool is available for both planners and customers to further analyze
and compare multiple candidate solutions.

The feedback from EA suggests that a visual analytics system
is necessary to empower planners to formulate multiple solutions
quickly, as well as to compare the solutions effectively. To design this
system, we followed a user-centered design process [36] and involved
experts in every stage of the iterative development since early 2015.

To elaborate the problem, we formally defined two terms, namely,
target area and target trajectory. Target areas often refer to the areas
where the target audience lives or works. Target trajectories are those
whose origins or destinations are within the target areas.

o Traffic volume refers to the volume of passengers who are likely

to see the billboard.

o Traffic Speed refers to the amount of time that passengers allo-

cate to see the billboard.

e Traffic OD can reveal a passenger’s demographic information to

assist in identifying the target trajectories.

o Environment reveals the information on the surrounding POIs

and the residents living or working around the location.

e Cost indicates the cost of a billboard.

We adopted three widely-accepted performance indicators [23] for
our scenario based on the suggestions of the domain experts.

e Coverage/Reach represents the percentage of the covered target

trajectories among all target trajectories. A trajectory is covered

if it passes by at least one of the billboards (i.e., at least one
contact) within a specified time.

e Opportunities to see (OTS) indicates the average number of bill-
board contacts among all target trajectories that see a billboard
of the campaign.

e Gross rating points (GRP ) measures the average number of
billboard contacts that 100 target trajectories produce (GRP =
reach + OT S % 100).

o Value for money (VFM) states the value of the cost (VFM =
covered target trajectories/total cost).

3.2 Data Abstraction

We mainly used three types of data collected in one city, where taxis
are a common form of transportation. The detailed information is de-
scribed as follows:

Road network data comprises 133,726 road segments (the average
length is 243 m) and 99,007 vertices (i.e., intersections of road seg-
ments) in the city.

GPS trajectory data includes the trajectories of 3,501 taxis from
the city in two months. A total of 3,500 sample GPS points are col-
lected for each taxi in one day at a sampling rate of 24 seconds per
point. These points constitute approximately 4 million trajectories
(segmented by passenger on/off events).

POI data contains 154,633 points in the city. Each POI is denoted
by its ID, category, and GPS location.

3.3 Task Analysis

By discussing with the experts in the form of structured interviews, we

compiled a list of analytical tasks.

R.1 Spatio-temporal distribution: How are the target trajectories
distributed across the city? What is the difference between week-
day and weekend? This information help users select the target
areas judiciously.

R.2 Location recommendation: How many billboards should be
placed in the target areas? Where are the optimal locations?
Manually selecting proper locations without computational aids
is time-consuming and may easily lead to suboptimal solutions.
Therefore, an interactive visual exploratory tool combining with
auto recommendation mechanisms (i.e., computational methods)
is strongly required.

R.3 Location assessment: How good is a billboard location? Why
is it selected for a billboard? Users want to easily access the
detailed information of a location, such as its cost, neighboring
environment, traffic volume, speed, and OD, to enable them to
make informed decisions.

R.4 Solution assessment: How effective is a billboard solution?
How does it satisfy customers’ requirements? Users want to
know the performance indicators of the selected solution such as
reach, traffic volume, traffic speed, and cost, to furhter estimate
whether it can meet the customers’ requirements. In particular,
the geospatial distribution of billboards should also be provided.

R.5 Solution comparison: What are the differences and similarities
among multiple candidate solutions? An in-depth understand-
ing of the differences and similarities among the candidate solu-
tions can help planners elaborate the selected solutions and ex-
plain their choices to customers.

R.6 Solution classification: How many groups of candidate solutions
exist? How these groups differentiate from each other? Users
are able to formulate multiple solutions in short time with the
assistance of computational models. Thus, it is critical to know
how the generated solutions can be grouped to obtain a quick
overview of the solutions.

R.7 Solution ranking: What is the ranking of multiple solutions?
Which ones are optimal? Users may have different opinions on
the optimal, thereby an interactive ranking method should be pro-
vided, allowing users to rank solutions as desired. A reasonable
ranking can help planners quickly find the desired solutions.



g

Road Network
Raw Trajectories

POI Data

Fig. 2. SmartAdP comprises three major components: data manager, location optimizer, and visualization explorer (i.e., solution generator and
explorer). The raw data is preprocessed and stored into the four application-specific data indexes for the use of location optimizer. The location
optimizer aims to determine the optimal billboard locations by leveraging the computational power of machines. The solution generator interacts
with the optimizer to create good candidate solutions. Meanwhile the solution explorer enables visual exploration and comparison of these solutions.

4 SYSTEM ARCHITECTURE

SmartAdP is a web-based application developed under the full-stack
framework of MEAN.js (i.e., MongoDB, ExpressJS, AngularJS, and
Node.js). The visual analysis module is implemented using D3.js
and Leaflet.js. We deployed the back-end part into our server with
2.40GHz Intel Xeon E5-2620 CPU and 64GB memory. Fig. 2 shows
the SmartAdP’s system architecture.

The solution generator helps users formulate a candidate solution.
Users need to select several target areas initially, and then two types
of heatmaps are provided to help users determine the befitting solu-
tion areas to place billboards (R1). When the solution areas are deter-
mined, users set the parameters of model and obtain a recommended
solution from the location optimizer (R2). Meanwhile, users can as-
sess whether the selected locations or the generated solutions are good
enough (R3, R4) and make adjustments accordingly. To further ex-
plore and compare multiple solutions, users can switch to solution
explorer that comprises three sub-views. The solution view shows a
high-level overview of the basic information of each solution and the
relationships among the solutions (RS, R6). The location view further
assists users in identifying the relationships at a locational level (RS,
R6). The ranking view visualizes the detailed performance related to
the attributes of each solution (R4, R5, R7).

5 MODEL

This section first describes the construction of data structure and then
introduces our novel visualization-driven model.

5.1 Data Structure Construction

The major data structures utilized in this study are trajectory-edge,
trajectory-vertex, and vertex-trajectory indexes. We refer to the road
segment in the road network as the edge, and the intersection (i.e.,
candidate location for placing billboard) as the vertex.

Trajectory-Edge Index, ;.. A GPS trajectory is a sequence of
time-ordered spatial points. We firstly apply a map-matching algo-
rithm [32] to map the spatial points of a given trajectory to the un-
derlying road network. Thereafter, the trajectory-edge index can be
constructed. From this index, the road segments passed by a given
trajectory can be identified.

Trajectory-Vertex Index, /;,. The trajectory-vertex index records
the covered vertices of all trajectories and can be easily constructed
from /.. Thus, each entry in /;, represents a unique trajectory, which
is identified by the trajectory ID Tr;. Ly[Tr;] lists all vertices that are
passed by Tr;, that is, {Tr; | v;,vj,... }.

Vertex-Trajectory Index, /,;. This index is an inverted trajectory-
vertex index, where each entry is identified by a vertex v; on the road
network. The entry Iy [v;] in this index stores all the trajectories that

are covered by v;, that is, {v; | Tr;, Tr; ... }. One can easily obtain the
coverage of a given vertex by using this index.

With these indexes, we can directly calculate the statistics (e.g., vol-
ume and speed) for each road segment and each location through a
series of summation and averaging operations. The reach, OTS, GRP,
and VFM can be calculated in the same manner, where only the target
trajectories are counted. Besides, a geospatial index can be naturally
supported by MongoDB [3]; for example, the vertices or the trajecto-
ries (OD) within multiple polygonal regions can be queried.

5.2 Extracting the Optimal Locations

SmartAdP provides two types of interactive queries, namely, k-
location query and 7-budget constraint query, to assist the domain ex-
perts in selecting the billboard locations. These two queries are based
on different scenarios. In particular, the k-location query aims to ex-
tract k locations from the candidates, where the cost of billboards is
not considered. Meanwhile, the T-budget constraint query focuses on
mining a set of locations with the total cost not exceeding the budget
7. Each trajectory has different weights in both queries. We define the
coverage value as the sum of the weights of all the covered trajectories.
Thus, both queries are aimed at extracting a set of locations with the
maximum coverage value to achieve a satisfactory advertising effect.
However, identifying k locations with the maximum trajectory cover-
age is an NP-hard problem, which is computing infeasible for large
k. In this situation, a tradeoff between the efficiency and effectiveness
should be considered. Therefore, we finally propose a visualization-
driven mining model that not only human knowledge can play a role,
but also an efficient searching and pruning strategy is employed (i.e.,
the greedy heuristic method).

5.2.1

The literature [15] has proven that the greedy heuristic is the most
effective polynomial solution to our problem and can provide (1 —
1/e) approximation to the optimal solution. Algorithm 1 shows the
pseudo code of the greedy heuristic for the k-locations query. This
algorithm first assigns the weights to each trajectory based on whether
they are target trajectories (cf. line 1-6). For example, the weights of
trajectories with their OD within the given spatial regions R,y are w,y
(cf. line 4-6), whereas the weights of the remaining trajectories are
set to wy,r. Then, the coverage value of each candidate vertex can be
calculated by adding the weights of its covered trajectories (cf. line 8).
Finally, the greedy heuristic is applied in selecting the k locations (cf.
line 10-16). In each iteration, the algorithm contains two steps:

Selection: In this step, the algorithm selects the vertex with the max-
imum coverage value and put it into the result set (cf. line 11- 12).
Updating: In this step, the algorithm updates the coverage value of all

k-Location Query



Algorithm 1 k-location query

Algorithm KLocation( Candidate vertices V,,,, Trajectory-vertex index I, Vertex-
trajectory index I,,, OD regions R,, Normal weight w,,,, OD weight w,q, k)

. identify all the trajectories covered by Vg — TRean

: for each trajectory Tr in TR, do

set w(Tr) to wyo,

. identify all the trajectories that one of its OD vertices located in R,q — TRyq
. for each trajectory Tr in TR, do
set w(Tr) to Woq
: for each vertex v in V,,, do
calculate the coverage value ¢(v) as Yrrep,, ) w(T7)
* Viesutr = 0; TRcoverea =0
: fori:=0tok-1do
pickup vyqy in Ve, with the maximum coverage value
Vresult = Vresutt U Vimax
for Trin Ly [Vinax] — T Reoverea 40

for vin 1,,[Tr] do

c(v) :=c(v) —w(Tr)

TReovered = TReoverea Ut [Vmax]
: return Vg,
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vertices. Specifically, for each newly covered trajectory T in the cur-
rent iteration (cf. line 13), it can identify the passing vertices by using
the trajectory-vertex index, i.e., Iy,[Tr]. The coverage value of every
passing vertex v is updated to ¢(v) —w(Tr) (cf. line 15).

5.2.2 1-Budget Constraint Query

We denote the cost of placing a billboard in vertex v as f(v), which is
estimated by considering two important factors, namely, the distance
from central areas and the traffic volume near the location; with the
cost of each central area being predefined, the cost of each billboard
location (the building cost is not considered here) can be calculated by
interpolation. The 7-budget constraint query attempts to extract a set
of locations with the total cost within 7. Therefore, the problem can
be modeled as the budget constraint maximum coverage problem, and
the better solution between the small cardinality optimal solution and
modified greedy heuristic can also provide a performance guarantee
(1—1/e) [26]. The algorithm follows two steps:

Small cardinality optimal solution: It identifies the optimal solution
with small cardinality. The cardinality of the optimal solution can be
set to 1, 2, or 3 according to the requirement of the result quality and
response time. Typically, a large cardinality tends to have more re-
sponse time but better performance guarantee.

Modified greedy heuristic: Different from the greedy heuristic in Al-
gorithm 1, the modified greedy heuristic adds the vertex with the max-
imum utilization ratio to the result set in each round. This process
continues until the total cost reaches the budget constraint 7. The uti-
c(v)
f)

lization ratio u(v) of v can be calculated by the equation u(v) =

5.2.3 Handling Interactive Query

Mining the appropriate locations to place the billboards requires sev-
eral rounds of involvements by users (R2). Note that all the input pa-
rameters except Iy, and I, are defined by users when they are interact-
ing with the solution generator. More specifically, the model supports
three particular interactive queries, namely, (1) pinning the preferred
vertices to the final result directly, (2) removing the unsatisfied vertices
from the candidates in next round query, and (3) setting the temporal
filter to consider the trajectories within that specified period only. The
k-location and 7-budget constraint query can provide these interfaces
through a few minor modifications. For the removal operation, we can
modify the input parameter V.,,. For the pin operation, we can add
another parameter Vp;, to initially allocate its vertices to the final re-
sult and update the coverage value of all vertices. The vertices that
should be removed or pinned depend on the users who utilize visual-
ization to facilitate their judgments. Similarly, for temporal filter, we
can add a parameter T, oq to filter all trajectories that are not within
the specified period.

6 VISUAL DESIGN

This section describes a set of visualization techniques that assist users
in generating solutions for billboard placements and comparing them.

6.1 Solution Generator

Users are desired to leverage the computational power of machines to
find the optimal solutions (R2). The candidate solutions , however, are
exponential in the number of locations, leading to a huge search space
for seeking the optimal solutions. Thus, an efficient search and prun-
ing strategy is requested to solve the problem. Moreover, the optimal
locations cannot be solely computed by machines, as users typically
have their own requirements (R2). Thus, a highly interactive system is
needed to allow efficient and smooth interactions with machines. The
solution generator (Fig. 1(A, B, C)) combines visualization and min-
ing techniques to enable users to explore the solution space as they
desire. It is mainly composed of three sub-views, namely, the dash-
board, map, and solution preview view.

6.1.1 Dashboard View

The dashboard view (Fig. 1A) shows the information of the current
solution under construction. From top to bottom, the view shows the
dataset, target area panel, solution area (the area considered for plac-
ing billboard) panel, and the parameter setting panel, which includes
the budget (number of billboards for k-location query and cost for -
budget constraint query), normal trajectory weight, target trajectory
weight, temporal filter (weekday/weekend), and speed filter.

6.1.2 Map View

Map-centred exploratory approach is very common when it comes to
making multiple criteria spatial decisions [20], as it can provide intu-
itive insights into environment. Thus, we provide a map view (Fig. 1B)
that integrates the real roadmap pictures at multiple scales by using
Google Maps API; users are allowed to change the map style into
satellite or plain map (Fig. 4D) for different purposes. In addition
to the roadmap layer, we add three other feature layers, namely, the
area drawing, heatmap, and marker layer.

The area drawing layer provides the function of drawing polygons
in the map, enabling users to specify the target and solution areas (i.e.,
the areas considered for placing billboards) in the forms of red and
blue polygons, respectively (Fig. 2). The editing and removing inter-
actions in the area are also supported on the dashboard (i.e., target area
and solution area panel).

To determine the befitting solution areas (R1), an evident visual rep-
resentation of spatio-temporal distributions of the target trajectories
are required. Thus, we add a heatmap layer, where we provide users
with two types of density maps, namely, the OD and road heatmap
(Fig. 2). The OD heatmap represents the density of the target trajecto-
ries’ pick-up and drop-off geolocations through color encoding, with
the dense red areas indicating frequent pick-up and drop-off events.
The road heatmap shows the density of the target trajectories on each
road segment using the same color encoding in the OD heatmap. To
facilitate in-depth analysis, both heatmaps can support OD filter (i.e.,
showing the trajectories to or from the target areas) and temporal filter
(i.e., showing the trajectories that occurred in weekdays or weekend)
by selecting different options on the top-right corner of the map.

A marker layer presents the locations selected by users or ma-
chines with blue markers on the corresponding locations on the map
(Fig. 4D). The markers can be removed by clicking them on the dash-
board. Users are also allowed to pin their favorite locations on the
map. When a location marker is clicked, the detailed information of a
billboard location is shown (Fig. 2), including the statistics of passing
trajectories, the surrounding POI information, and the OD heatmap of
the passing trajectories (R3).

6.1.3 Solution Preview

Users want to know their operating records and the general perfor-
mance information of each previously generated solutions, so they can
explore the solution space efficiently based on previous experience.



The solution preview saves the user’s previous settings on each so-
lution and also provides the statistical information for each of them.
Fig. 1C illustrates the solution preview, where each box represents one
solution. The parameters are shown inside the boxes. A bar chart
is horizontally aligned on the top of each box where eight attributes
are shown, including the number of billboard (N), cost (C), average
speed (S), traffic volume (V), value for money (M), reach (R), OTS
(O), and GRP (G). The bar charts are assigned with different categor-
ical colors to indicate which solutions they belong to. When users
hover over a bar of one solution, the bars indicating the same attribute
values of other solutions would be highlighted to facilitate compari-
son (as shown in Fig. 6 #1 - #6). The horizontally laid boxes enable
users to perform a rough-level comparison among candidate solutions;
thus, the solutions with poor performances can be easily detected and
deleted (R4). Besides, users are allowed to directly edit any solution
by adding or deleting billboard locations from it (R2).

6.2 Solution Explorer

Users have to prepare multiple solutions and then analyze the relative
merits of these solutions with customers. This way, customers can se-
lect the most satisfying one according to their criteria and preferences.
Thus, a visualization tool is necessary for users to conduct in-depth
comparative analysis of the candidate solutions. The solution explorer
(Fig. 1(D, E, F)) is designed to meet the requirements of R4 to R7.
It assists users in conducting multi-perspective comparative analysis
among different solutions. The solution explorer comprises three sub-
views, namely, the solution, location, and ranking view. These views
can be linked to assist users analyze and compare the multiple candi-
date solutions in the same time at different levels of details.

6.2.1

The solution view aims to provide users with a visual summary of each
solution and the relationships among them (RS, R6). Meanwhile, this
view is a pivot that connects the location and ranking view, thereby
enabling users to explore the solutions from multiple perspectives and
assisting them determine the optimal solution immediately (RS).

Glyph Design. A glyph design that can reveal the general perfor-
mance of a solution is required to visually summarize the important
features of each solution. However, numerous features may influence
the performance of a solution. If we show all of these features simul-
taneously, then the glyph can be visually complex, which may impose
cognitive burden to the users working memory and reduce the task
performance. After discussions with our collaborators, we identify the
key information that should be visually encoded, namely, reach (week-
day and weekend), traffic speed, cost, and POIs. These features enable
users to obtain a quick overview of a solution.

A familiar metaphor can greatly enhance comprehension and re-
duce the cognitive burden on working memory. Inspired by the
dashboards of vehicles, we design a novel radial-based [11] visual
metaphor to represent a solution, as all traffic-related attributes are
naturally related to vehicles. Fig. 3A shows our design. Users often
generate at most a dozen solutions and people can efficiently distin-
guish a dozen colors [37]. Hence, we use the color of the inner circle
to indicate the particular solution (consistent with the colors used in
the solution preview). The radius of the inner circle represents the
total cost by default (the encoding attribute can be specified by users).

A radius heatmap is attached inside the outer circle, which is sim-
ilar to the speed meter in a vehicle’s dashboard; the dark red color
indicates high speed. We use a pointer to clearly indicate the average
traffic speed for all the trajectories passing the locations of the solu-
tion. In addition, the arc area outside the outer circle represents the
volume of weekday and weekend reach. The arc is constantly at 180°,
the scale is equal to the total number of target trajectories. The arc sub-
areas lying to the left and to the right of vertical dashline represent the
weekday and weekend volume of the target trajectories, respectively.
The blue area encodes the proposition of the covered target trajecto-
ries among all target trajectories. We add a scale to the arc area to help
perceive the proposition accurately, and attach nine small radial nodes
to the remaining space surrounding the glyph to show nearby POIs in

Solution View

different POI categories (nine categories are selected by our collabora-
tor). We use the size of the nodes to encode the number of POIs. From
top to bottom, they are public transport, academic, residence, hotel,
sport, life service, shopping, catering, and automobile service.

Design alternatives: Fig. 3 presents several alternative designs that
have been evaluated. Design C uses a horizontal ruler on the top to
show the reach volume information. The advantage is the use of length
to represent the magnitude value, which is perceived more accurately
than angle [37]. However, it is not symmetrical and discords with cir-
cle. Our collaborators did not like the design. Thus, we proposed two
other designs (Design D-E) using arc length to represent the reach vol-
ume information. Design D utilizes two scales (one is on the volume
arc and the other one lies insider the circle). Although design D cuts
down on the use of color, the two radial scales stay too close and can
easily confuse users. In contrast, design A and E similarly use a scale
on the volume arc and a radial heatmap inside the glyph to represent
different scales. Design E uses the number of blocks to visually en-
code the average traffic speed without using a pointer. However, our
collaborators reported that it is not as effective as design A for com-
paring speeds among multiple solutions.
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Fig. 3. (A) A dashboard-like glyph design to summarize the key fea-
tures of each solution. (B) A radial location glyph to present a selected
billboard location. (C, D, E) show the alternative solution glyph designs.

Layout: The solution view based on a scatterplot layout allows
users to obtain a quick overview of the relationships among solutions
(R5). We compute the similarities among different solutions and uti-
lize Multidimensional Scaling (MDS) [27] to create the layout. We
also use a well-established method to eliminate the overlap issue [14].
The similarity between two solutions depends on how many the same
trajectories are covered. Thus, we can treat the trajectories covered in
the two solutions as two sets A and B. We calculate the set similarity
by |ANB/min(|Al,|B])| [45]. Two sets are more similar when they
share more elements. In the resulting layout, the closer the solution
glyphs stay, the more common target trajectories share.

6.2.2 Location View

From the solution view, users can detect the relationships among dif-
ferent solutions with respect to the similarity on the covered target
trajectories. Users may want to further analyze the relationships at the
fine-grained location level. For example, they may want to know how
the locations in each solution distribute geographically, and which so-
lutions the locations of interests belong to. Such information can help
users identify the commonalities and differences among the solutions
from the perspective of locations (R5). Therefore, we design a visual-
ization that can assist users in this kind of tasks.

To this end, we showed a few designs to our collaborators. Line-
set style [35] design (i.e., locations shown in one solution are linked
using a line) was first introduced; however, this design has several is-
sues. First, the users are unfamiliar with the map style. Second, this



technique suffers from a scalability issue that can lead to visual clutter
when a location is shared by many solutions. Moreover, this technique
can only show the geographical distribution, whereas our collaborators
want to acquire more information, such as the cost of each location.
To address these concerns, we had several rounds of discussions with
our collaborators. Finally, we designed a new radial location glyph
(Fig. 3E) and derived a layout algorithm by extending Dorling car-
togram [13] to show the value-by-location maps effectively.

In Dorling cartogram, the relative geographical positions among
different objects are considerably preserved. In our case, we use a
circle to represent a selected billboard location. By employing the lay-
out of Dorling cartogram, the relative geographical positions of these
billboard locations are preserved (Fig. 5B). Fig. 3B shows a location
glyph. The primary visual variables should be used to encode the pri-
mary data attributes; as suggested by our collaborators, we use the ra-
dius of a circle to encode the cost information by default (the encoding
attribute can be specified by users). In addition, we fill the circle with
a plain-style roadmap in a novel manner. The center of the circle rep-
resents the billboard location marked as a red cross. The visual design
enables users to immediately identify the road environment around the
billboard. To reveal the set relations between solutions and locations,
we attach a set of radial color bars surrounding the circle to indicate
the solutions that the location belongs to. For the solutions to which
users pay attention, the corresponding color bars will be highlighted
with increased thickness.

6.2.3 Ranking View

Users need a flexible ranking tool to help them quickly identify good
solutions they desire (R7). In particular, all performance-related in-
dicators should be displayed on demand. The system should enable
users and customers to freely adjust each attributes weight because
they may have different opinions on the performance indicators. The
ranking should be updated accordingly and instantly. Moreover, users
explained that showing only one value for each attribute is insufficient;
they need to analyze further details with respect to locations contained
in each solution. For example, users want to know the reach of each
location in every solution for the reach indicator. This type of infor-
mation provides users with detailed insight into how good a solution
is regarding a given indicator (R4).

The ranking view visualizes the detailed performance related to the
attributes of each solution, including the number of billboard, cost,
speed, volume, VEM, reach, OTS, GRP, slowness (inverse of speed
for ranking use), in a highly organized and interactive tabular form.
To support location-level comparison, we embed boxplots [4] into the
matrix. This new design enables users to glean insight into the relative
performance of the solutions. This view together with the aforemen-
tioned two views (i.e., the location view and the solution view) em-
power users to quickly find the optimal solutions as they desire (R7).

Fig. 1F shows a matrix-based view, which is inspired by lineup [18].
The first column lists all the candidate solutions with color bars on the
left indicating different solutions. The color scheme used is consistent
with that in the solution and location views. Other columns display
the attribute values, which are normalized and encoded by the length
of bars. The width of a column represents the weight users assigned
to the attribute. Users can click on the header of a column to rank the
solutions by the associated attribute. The columns can also be grouped
by right clicking on their headers to rank the solutions by the weighted
sum of the attributes in the group. For example, in Fig. 2, the columns
reach, OTS, GRP, VEM, Volume, and slowness are grouped; the solu-
tions are ranked by weighting the sum of these attributes. When users
are interested in an attribute, they can click on the body of that column
, which can expand as a boxplot to show the statistical distributions
of the corresponding attributes of the locations in each solution (see
the column reach in Fig. 1F). In particular, the minimum, first quartile,
median, third quartile, and maximum values are revealed.

6.3 Interactions

User interactions supported by the system are summarized as follows.

Details-on-demand is supported by SmartAdP to facilitate explo-
ration in solution space and analysis of patterns at different levels of
details. In the general map view and location view, users are allowed
to click any location to see its detailed information. In addition, the
boxplot is only shown on demand.

Filtering and highlighting enable users to focus on the informa-
tion of interests. In SmartAdP, users can filter trajectories using a tem-
poral filter. In particular, the traffic OD information can be further
filtered based on whether the trajectories enter or leave for the target
areas. The highlighting feature is supported in every view. For exam-
ple, when hovering on a bar in a solution preview’s barchart, the bars
encoding the same attribute in other solutions are highlighted. When
hovering on a glyph in the solution view, the corresponding locations
and solutions are highlighted in the location and ranking views.

Linking connects the three views in the solution explorer. When
users click on a glyph in the solution view or a solution color bar in the
ranking view, they can be visually linked with the contained locations
in the location view. Edge bundling technique [50] is applied to reduce
the visual clutter and increase the readability.

7 EVALUATION
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Fig. 4. Three patterns detected. First, the road heatmap (D) highlights
the road stretches heavily passed by the target trajectories where areas
1 and 4 have more target trajectories than areas 2 and 3. Second,
areas 2 and 3 tend to have higher speed and cost, respectively (A, E,
and F). Third, the locations marked with the green and blue rectangles
are selected unexpectedly. The green one (B) shows two locations in
close proximity and the blue one has a lot of traffics at night (C).

7.1 Case Studies

We conducted the case studies with our domain experts; they were
familiar with our designs and databases. As a note, that the cost men-
tioned in this section denotes monthly cost.
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In this scenario, the experts used SmartAdP to explore the solution
space. They selected a few target areas (the blue areas in Fig. 4D), in
which four famous universities are located.

Exploring the distribution of target trajectories. The experts
sought to determine which areas are appropriate for placing billboards
(R1). To this end, they first needed to understand the distribution of
the target trajectories. From the OD heatmap (Fig. 1B), the experts
identified five different areas: (1) an area with a large railway sta-
tion, (2) a business area that caters to dining or shopping activities,
(3) a research center that is home to a number of scientific research
institutions, (4) a park area for leisure or exercise, and (5) a central
area in which the placement of billboards is expensive. From the road
heatmap (Fig. 4D), the experts found that the road stretches in areas 1
and 4 were used more heavily than those in areas 2 and 3.

Exploring the solution space
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Fig. 5. The two locations marked with the blue rectangles present the difference between the weekend (blue) and weekday (orange) solutions. The
location detail view (D) shows that the destinations of the passed trajectories on weekends are mostly parks.

Comparing solution areas for billboard placements. The experts
aimed to determine how good each selected solution area was (areas
1-4 in Fig. 4D). A global area depicted as a combination of the four
areas was also included. The experts attempted a setting with five
billboards and another setting with eight billboards in each solution
area (four areas in four directions and one global area). Hence, 5 *
2 = 10 candidate solutions were formulated, during which process the
solution preview provided a quick overview of the performances of
the created solutions (R4). To conduct in-depth analyses, the experts
switched to the solution explorer, where they identified four clusters
(C1-C4 in Fig. 1D) the solution view (RS, R6).

As observed by the experts, the solutions in C3 and C4 clearly have
a significantly low reach because of the short blue arcs. Moreover, the
solutions in C3 achieve fast speeds (see the speed pointer and radial
boxplot inside the associated glyphs). Fast speeds are not desired by
the experts because fast speeds do not allow sufficient time for view-
ing billboards. The speeds are reflected in the boxplot in the ranking
view (Fig. 4A), where the medians of solutions #2 and #7 are much
higher than others. The location view (with the circle size encoding
the speed in Fig. 4F) reveals that the locations in C3 are in the bottom
area. The solutions in C4 entail a relatively high cost (the glyphs have
larger inner circles in Fig. 1D), as the associated locations in the lo-
cation view (with circle size encoding cost by default in Fig. 4E) are
close to the city central area (area 5 in Fig. 1B). This can also be vali-
dated by the size of POI circles around the glyphs in the solution view
(Fig. 1D); typically the larger the POI circles (more POIs around), the
more expensive the areas for placing billboards. C1 contains four so-
Iutions with higher reach than those in the other clusters because the
blue radial arcs are longer. Furthermore, the experts found that the
billboards of the solutions in C1 are located near the top of the map
(e.g., the billboards of the purple solution in Fig. 1E). Meanwhile, the
experts changed the radius of the circle in the location view to encode
the reach, and found the circles on the top tend to have larger size
than others, which indicates the higher reach. This is in accordance
with the OD and road heatmaps. By further checking the boxplot in
ranking view (the reach column in Fig. 1F), the experts found that so-
lutions #4, #5, #9, and #10 are of high reach. Solutions #4 and #9 are
formulated with the solution area 4 (Fig. 4D). Solutions #5 and #10
are formulated with the global solution area, which also include area
4. This indicates most of optimal locations are within the area 4 in
Fig. 4D. C2 contains two solutions whose solution area is area 2 in
Fig. 4D. These two solutions perform normally. In summary, areas 4
(Fig. 4D) is preferable solution area for billboard placements.

Improving and editing solutions. When the experts evaluated area
3 in Fig. 4D, they found two unexpected locations selected by the
model (R3). First, the two selected locations are too close (marked
with the green rectangle in Fig. 4(D, E)). It was explained that the road
is made up of several lanes in opposite directions and both directions
have large volume of target trajectories. Whereas, the experts thought
that placing two billboards in close proximity is not necessary. Sec-

ond, despite the relative large traffic volume of the location (marked
with the blue rectangle in Fig. 4(D, E)), it is mainly attributed to the
traffics at night (Fig. 4C. Experts zoomed in on the map, thereby find-
ing the location surrounded by a number of bars. As the illumination
at night is not as good as daytime, daytime traffic is preferable. Thus,
the experts removed the two unexpected locations.

7.1.2 Finding the optimal solution

This case is aimed to demonstrate the effectiveness of the solution
explorer in identifying optimal solutions (R7). Note that the target
areas in this case is the same as the previous one.

Weekday vs. Weekend. Driven by the previous experience, the
experts quickly generated two solutions. The two solutions cover
the same solution areas, that is, the global area combining area 1-4
Fig. 4D. The two solutions differ in terms of the setting of the tempo-
ral filter. One solution only considers weekday trajectories, whereas
the other solution only considers weekend trajectories. As indicated
by the glyphs in Fig. S5A and the performance indicators in Fig. 5C,
these two solutions (blue for weekend and orange for weekday) per-
form similarly because all the indicators, except OTS, are quite similar.
By further checking the location view (with circle size encoding cost
in Fig. 5B), the experts found that the difference between the two so-
lutions was mainly caused by the two locations highlighted in the blue
rectangle. They were particularly interested in the one on the right
side, as it was expensive (large circle) and far from the commonly se-
lected locations. Hence, the experts explored the OD heatmap of the
location (Fig. 5D), and found that the destinations of the trajectories
that passed the location on weekends were mostly parks. The experts
inferred that people tended to visit parks on weekends. This result
also explains why the location was picked by the model (R3), that is,
the location showed a large number of target trajectories on weekends.
People going out on weekends, especially those visiting parks, tend to
be in a good mood and are highly likely to be influenced by advertis-
ing content. All the experts preferred solution #1 despite solution #2
being slightly better in terms of the OTS and GRP.

Dispersed Strategy vs. Clustered Strategy. The experts formu-
lated a series of candidate solutions given a budget of $380,000. Two
advertising campaign strategies were employed: (1) a dispersed strat-
egy, which involves placing billboards in a large region to increase the
reach as much as possible; (2) a cluster strategy, which involves plac-
ing billboards in a small region to increase the OTS as much as possi-
ble. Using SmartAdP , the experts generated three candidate solutions
for each strategy with different parameter settings (Fig. 6). Specif-
ically, solutions #1 to #3 were generated by adopting the dispersed
strategy (the solution area is nearby area 4 in Fig. 4D). Solution #1
and #2 were generated with a weight ratio (the target trajectory weight
to the normal trajectory weight) of 5 and 100, respectively. Solution
#3 involved the addition of a speed filter (< 15km/h). Solutions #4
to #6 were generated with the same settings while limited in a small
region in area 4 of Fig. 4D.



Through the solution explorer, the experts identified an outlier (the
blue solution) in the solution view (C2 in Fig. 2 Solution View). For
the locations in the blue solution, they are distributed dispersedly in
the location view (Fig. 2 Location View) and show high traffic vol-
ume (Fig. 2 Ranking View), as well as a low reach (the glyph in solu-
tion view has short outer radial arc). The other 5 solutions form two
clusters, where the solutions with the same advertising strategy cluster
together (C2 and C3 in Fig. 2 Solution View). From the glyphs, the
experts knew the speeds of the brown and green solutions were slow
owing to the speed filter, but their reach was relatively low in com-
parison with that of the other solutions. The experts further used the
ranking function in the ranking view to determine the optimal solu-
tion. The results created by ranking the solutions according to a single
column (attribute) are listed in Fig. 6. Generally, the dispersed strat-
egy (#1 - #3) performs much better than the clustered strategy (#4 -
#6) in terms of reach, whereas the clustered strategy achieves a higher
OTS than the dispersed strategy. However, the solutions have differ-
ent rankings when ranked by different attributes. Hence, determining
the optimal solution at first glance was difficult and as such the ex-
perts further ranked the solutions with a group of specified columns
(attributes). The view allowed the experts to adjust the weight of
each column flexibly in the group. Finally, they obtained a ranking
of the solutions (Fig. 2 Ranking View), where the GRP and VFM are
of higher weights than the other attributes. As a result, solution #5
generated with clustered strategy was selected.
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Fig. 6. The solution preview (top) displays the parameters and statistics
of each solution. The bottom shows the solution ranks with the different
attributes selected.

7.2 Domain Expert Interview

We collected the feedback of the domain experts by conducting one-
on-one interviews. The feedback was summarized as follows.

Visual Design and Interactions. The experts confirmed that our
system is well designed and user friendly. In particular, our metaphor-
based glyph design received high praises from the domain experts.
They believed that the system could be easily understood by users with
different backgrounds. EA commended, “Today’s consumers are not
so suggestible for the sake of an increasingly accessible Internet. Your
visualizations can be an incredible tool to clearly demonstrate the up-
side of our service.” EC praised the smooth interactions, comment-
ing “SmartAdP integrates many advanced navigation and interaction
techniques, enabling me to smoothly work with machines.”

Usability and Improvements The experts appreciated our system
and found the functions provided by SmartAdP quite useful. They all
agreed that our system is useful in not only making adjustments to
campaigns but also interpreting the data and leveraging the findings to
benefit their clients and brands. Apart from the aforementioned, our
experts also provided some valuable suggestions. EA mentioned, “In
many times, I found several flaws of candidate solutions in the solution
explorer. It would be nice if I can edit solutions directly in this inter-
face.” EB further suggested an advanced solution merging function
would be helpful, as two solutions are sometimes complementary.

8 DISCUSSION

Our evaluation demonstrates the effectiveness of SmartAdP . Never-
theless, there is still space for improvement.

The system does not support visual comparison of hundreds of so-
lutions, because we use colors to differentiate candidate solutions and

people cannot effectively distinguish over one dozen colors [37]. Nev-
ertheless, we believe that our design works for most cases because
users typically do not generate many solutions. Likewise, the location
view suffers from the same problem with the increase of billboards. A
possible solution to the problem is to employ a hierarchical strategy
to handle numerous circles. Additionally, the current system mainly
focuses on comparison at the solution level and does not support dis-
playing values of multiple criteria for locations directly. Although the
location view and embed boxplots in the rank view can facilitate com-
parison among locations, they can only display one attribute at the
same time. Therefore, we plan to investigate more design choices for
showing multiple attributes of locations in the rank view.

Travel direction should be considered when a road is so wide that
billboards are visible only from one side of the road. The current sys-
tem is capable of dealing with that situation for the reason that the
passing-by trajectories of the locations on the two opposite sides of a
wide road are counted separately. More specifically, for a wide road
in the road network data, it is always treated as two road segments
with opposite directions; hence, the locations on the two road seg-
ments count only the trajectories from one direction. However, travel
direction can also influence the manner in which we place a billboard
in a given location. For instance, we may also need to take into ac-
count several additional factors, such as the billboard orientation and
the height off the ground. These factors are not considered currently
but are worthy of being explored in the future.

Regarding the model itself, the greedy heuristic is suggested to ex-
tract the locations. Nevertheless, our work does not limit the utilization
of other more sophisticated methods to further improve the quality of
the results. For example, the anytime refinement [51] is one of the
possible methods. More advanced methods enabling users to interac-
tively train and improve models are also worth further investigations.
For taxi data, despite its prominent advantages, it cannot adequately
represent all the mobility movement patterns. This issue is common in
prior studies that utilize taxi trajectories. Hence, we are interested in
integrating additional types of data, such as location-based social net-
work data or the information about regional functions. This requires
more efforts on solving the problem of heterogeneous data fusion [47].

Although our work is primarily designed for the billboard location
selection problem, it can be easily adapted for other similiar problems,
such as selecting locations of retail stores or restaurants. In these si-
miliar problems, a number of good locations can be recommended by
adapting our novel visualization-driven model with the data that can
reveal human mobility patterns, such as taxi trajectories. Our visual-
ization approach, including solution generator and solution explorer,
can also be tailored and extended to support visual editing and com-
parison of different sets of locations.

9 CONCLUSION

In this paper, we systematically study the problem of identifying the
optimal billboard locations using massive trajectory data. Closely
working with the end users enables us to derive two major challenges
facing billboard advertising planners, namely, creating and comparing
multiple solutions in an immediate and accurate manner. Hence, we
present SmartAdP, an interactive visual analytics system that combines
a new application-driven mining model with several well-designed vi-
sualization and interaction techniques. We conduct case studies and
expert interviews to demonstrate the system. Positive feedback and
in-depth insights show the usefulness and effectiveness of our system.

ACKNOWLEDGMENTS

The work is supported by National 973 Program of China
(2015CB352503), the Fundamental Research Funds for Central Uni-
versities (2016QNA5014), National Natural Science Foundation of
China (No. 61502416), the research fund of the Ministry of Educa-
tion of China (188170-170160502), 100 Talents Program of Zhejiang
University, RGC GRF16241916, ITS/170/15FP, and a grant from Mi-
crosoft Research Asia.



REFERENCES

(1]
[2]
(3]
(4]
(51
[6]
(71

(8]
(9]

(10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

(26]

APN Outdoor. http://goo.gl/ALn5AB.

Lamar. http://goo.gl/P8673kQ.

MongoDB: 2dsphere Indexes. https://goo.gl/wlarPf.
S. Few. Distribution displays, conventional and potential, 2014.
Technical report. http://goo.gl/zy8ulo.

N. Andrienko and G. Andrienko. Informed spatial decisions
through coordinated views. Information Visualization, 2(4):270-
285, 2003.

N. Andrienko and G. Andrienko. Spatial generalization and ag-
gregation of massive movement data. IEEE TVCG, 17(2):205—
219, 2011.

N. Andrienko and G. Andrienko. Visual analytics of movement:
An overview of methods, tools and procedures. Information Vi-
sualization, 12(1):3-24, 2013.

W. Chen, F. Guo, and F.-Y. Wang. A survey of traffic data visu-
alization. IEEE TITS, 16(6):2970-2984, 2015.

Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu. Monitoring path
nearest neighbor in road networks. In Proc. ACM SIGMOD,
pages 591-602, 2009.

C. Collins and S. Carpendale. Vislink: Revealing relationships
amongst visualizations. IEEE TVCG, 13(6):1192-1199, 2007.
W. Cui, H. Qu, H. Zhou, W. Zhang, and S. Skiena. Watch the
story unfold with textwheel: Visualization of large-scale news
streams. ACM TIST, 3(2):20, 2012.

K. Deng, K. Xie, K. Zheng, and X. Zhou. Trajectory indexing
and retrieval. In Computing with Spatial Trajectories, pages 35—
60. Springer, 2011.

D. Dorling. Area cartograms: their use and creation. In The
Map Reader: Theories of Mapping Practice and Cartographic
Representation, pages 252-260. Wiley, 2011.

T. Dwyer, K. Marriott, and P. J. Stuckey. Fast node overlap re-
moval. In Proc. Graph Drawing, pages 153-164, 2005.

U. Feige. A threshold of In n for approximating set cover. Jour-
nal of the ACM (JACM), 45(4):634-652, 1998.

N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual
exploration of big spatio-temporal urban data: A study of new
york city taxi trips. IEEE TVCG, 19(12):2149-2158, 2013.

M. Gleicher, D. Albers, R. Walker, 1. Jusufi, C. D. Hansen, and
J. C. Roberts. Visual comparison for information visualization.
Information Visualization, 10(4):289-309, 2011.

S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit.
LineUp: Visual analysis of multi-attribute rankings. [EEE
TVCG, 19(12):2277-2286, 2013.

X. Huang, Y. Zhao, J. Yang, C. Zhang, C. Ma, and X. Ye. Traj-
Graph: A graph-based visual analytics approach to studying ur-
ban network centralities using taxi trajectory data. I[EEE TVCG,
22(1):160-169, 2016.

P. Jankowski, N. Andrienko, and G. Andrienko. Map-centred
exploratory approach to multiple criteria spatial decision mak-
ing. International Journal of Geographical Information Science,
15(2):101-127, 2001.

H. Jeung, Q. Liu, H. T. Shen, and X. Zhou. A hybrid prediction
model for moving objects. In Proc. ICDE, pages 70-79, 2008.
D. Karamshuk, A. Noulas, S. Scellato, V. Nicosia, and C. Mas-
colo. Geo-spotting: Mining online location-based services for
optimal retail store placement. In Proc. ACM SIGKDD, pages
793-801, 2013.

H. Katz. The media handbook: A complete guide to advertis-
ing media selection, planning, research, and buying. Routledge,
2014.

J. Kehrer and H. Hauser. Visualization and visual analysis of
multifaceted scientific data: A survey. IEEE TVCG, 19(3):495-
513,2013.

J. Kehrer, H. Piringer, W. Berger, and M. E. Gréller. A model for
structure-based comparison of many categories in small-multiple
displays. IEEE TVCG, 19(12):2287-2296, 2013.

S. Khuller, A. Moss, and J. S. Naor. The budgeted maximum
coverage problem. Information Processing Letters, 70(1):39-45,

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]
(37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

(51]

1999.

J. B. Kruskal. Nonmetric multidimensional scaling: a numerical
method. Psychometrika, 29(2):115-129, 1964.

J.-G. Lee, J. Han, X. Li, and H. Gonzalez. TraClass: Trajec-
tory classification using hierarchical region-based and trajectory-
based clustering. In Proc. VLDB, pages 70-79, 2008.

J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: A
partition-and-group framework. In Proc. ACM SIGMOD, pages
593-604, 2007.

H. Liu, Y. Gao, L. Lu, S. Liu, H. Qu, and L. M. Ni. Visual
analysis of route diversity. In Proc. IEEE VAST, pages 171-180,
2011.

S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information visu-
alization: recent advances and challenges. The Visual Computer,
30(12):1373-1393, 2014.

Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang.
Map-matching for low-sampling-rate GPS trajectories. In Proc.
ACM SIGSPATIAL, pages 352-361, 2009.

J. Malczewski. GIS and multicriteria decision analysis. Wiley,
1999.

J. Malczewski. Gis-based multicriteria decision analysis: a sur-
vey of the literature. International Journal of Geographical In-
formation Science, 20(7):703-726, 2006.

W. Meulemans, N. H. Riche, B. Speckmann, B. Alper, and
T. Dwyer. KelpFusion: A hybrid set visualization technique.
IEEE TVCG, 19(11):1846-1858, 2013.

T. Munzner. A nested model for visualization design and valida-
tion. JEEE TVCG, 15(6):921-928, 20009.

T. Munzner. Visualization Analysis and Design. CRC Press,
2014.

R. Scheepens, C. Hurter, H. Van De Wetering, and J. J. Van Wijk.
Visualization, selection, and analysis of traffic flows. IEEE
TVCG, 22(1):379-388, 2016.

R. Scheepens, N. Willems, H. Van de Wetering, G. Andrienko,
N. Andrienko, and J. J. Van Wijk. Composite density maps for
multivariate trajectories. IEEE TVCG, 17(12):2518-2527, 2011.
C. Shi, Y. Wu, S. Liu, H. Zhou, and H. Qu. LoyalTracker:
Visualizing loyalty dynamics in search engines. [EEE TVCG,
20(12):1733-1742, 2014.

C. Tominski, H. Schumann, G. Andrienko, and N. Andrienko.
Stacking-based visualization of trajectory attribute data. /EEE
TVCG, 18(12):2565-2574, 2012.

Y. Wang, Y. Zheng, and Y. Xue. Travel time estimation of a path
using sparse trajectories. In Proc. ACM SIGKDD, pages 25-34,
2014.

Z. Wang, M. Lu, X. Yuan, J. Zhang, and H. Van De Wetering.
Visual traffic jam analysis based on trajectory data. IEEE TVCG,
19(12):2159-2168, 2013.

Y. Wu, E Wei, S. Liu, N. Au, W. Cui, H. Zhou, and H. Qu.
OpinionSeer: interactive visualization of hotel customer feed-
back. IEEE TVCG, 16(6):1109-1118, 2010.

M. A. Yalcin, N. Elmqgvist, and B. B. Bederson. AggreSet: Rich
and scalable set exploration using visualizations of element ag-
gregations. /[EEE TVCG, 22(1):688-697, 2016.

K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang. On discovery of
gathering patterns from trajectories. In Proc. IEEE ICDE, pages
242-253,2013.

Y. Zheng. Methodologies for cross-domain data fusion: An
overview. IEEE transactions on big data, 1(1):16-34, 2015.

Y. Zheng. Trajectory data mining: an overview. ACM TIST,
6(3):29, 2015.

Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing:
concepts, methodologies, and applications. ACM TIST, 5(3):38,
2014.

H. Zhou, P. Xu, X. Yuan, and H. Qu. Edge bundling in informa-
tion visualization. Tsinghua Science and Technology, 18(2):145—
156, 2013.

S. Zilberstein. Using anytime algorithms in intelligent systems.
Al magazine, 17(3):73, 1996.


http://goo.gl/Aln5AB
http://goo.gl/P86jkQ
https://goo.gl/wlarPf
http://goo.gl/zy8uAo

	Related Work
	BACKGROUND
	Background Knowledge
	Data Abstraction
	Task Analysis

	MODEL
	Extracting the Optimal Locations
	-Budget Constraint Query
	Handling Interactive Query


	VISUAL DESIGN
	Solution Generator
	Dashboard View
	Map View
	Solution Preview



