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ABSTRACT

With the rapid development in graphics hardware and volume ren-
dering techniques, many volumetric datasets can now be rendered
in real time on a standard PC equipped with a commodity graphics
board. However, the effectiveness of the results, especially direct
volume rendered images, is difficult to validate and users may not
be aware of ambiguous or even misleading information in the re-
sults. This limits the applications of volume visualization. In this
paper, we introduce four quantitative effectiveness measures: dis-
tinguishability, contour clarity, edge consistency, and depth coher-
ence measures, which target different effectiveness issues for direct
volume rendered images. Based on the measures, we develop a
visualization system with automatic effectiveness assessment, pro-
viding users with instant feedback on the effectiveness of the re-
sults. The case study and user evaluation have demonstrated the
high potential of our system.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1 INTRODUCTION

Direct Volume Rendering (DVR) is a powerful and flexible visual-
ization technique for exploring volume data sets. To promote wider
adoption of volume rendering in practice, recent research mainly
focuses on the intuitiveness [24] and efficiency [6] of volume ren-
dering. However, even if ideally intuitive and efficient volume ren-
dering can be developed, end users may still feel unsatisfied be-
cause some ambiguous information such as artifacts could be in-
troduced in volume rendering. Effective volume rendering, on the
other hand, has the capability of effectively presenting the results
that can be accurately interpreted by perceivers [11].

In many volume visualization applications, the context and the
spatial relations between structures are usually important for users
to analyze the data and gain insight. Merely displaying important
structures one by one automatically is not sufficient. Hence, there
is often no automatic approach for delivering effective visualiza-
tion and user interaction with the system is needed. For instance,
to visualize an MRI volume, a predefined transfer function is often
needed to be fine-tuned to adapt to the data and modality. Nev-
ertheless, the interactions by end users are often error prone and
may introduce misleading information resulting in unreliable con-
clusions. Therefore, in visualization users often have to rely on
their expertise and judgment to determine whether the information
has been faithfully revealed or not, thus leading to an inefficient and
ineffective visualization. In this scenario, the efficiency is affected
because the burden of the evaluation rests on the users. The ef-
fectiveness is also limited since the subjective evaluation is usually
unreliable and inconsistent. Thus, an effective visualization sys-
tem should not only generate impressive images for users, but also
evaluate the effectiveness of these images.
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In recent years, researchers have become increasingly interested
in assessing the usability of visualization [13]. Previous approaches
usually validate the effectiveness of visualization with formal user
studies [7]. These approaches evaluate the effectiveness at a high
level and human perception issues are often involved. They are
promising and helpful for the visualization community to improve
the quality of their systems based on the feedback from users or ex-
perts. Nevertheless, previous research has mainly focused on help-
ing visualization experts design and improve their systems rather
than providing quick effectiveness feedback on the results to end
users. In addition, these approaches cannot be easily quantified and
incorporated into visualization systems. This strongly motivates
us to develop a new visualization system that can evaluate the ef-
fectiveness of a volume rendered image quantitatively and provide
instant feedback to users.

In this paper, we investigate the effectiveness issues specifically
for direct volume rendered images (DVRIs) generated by full Direct
Volume Rendering (DVR) based on ray casting, since full DVR is
more general and complex. To evaluate the effectiveness of DVRIs,
two different classes of effectiveness criteria - sufficient criteria and
necessary criteria - could be developed. In visualization, if the suf-
ficient criteria are satisfied, the visualization goal can be achieved.
For the necessary criteria, if they are not satisfied, the visualization
goal cannot be achieved. However, even if these necessary criteria
are satisfied, there is still no guarantee that the visualization goal
can be achieved. Sufficient effectiveness criteria are the holy grail
of volume visualization and may not be possible for many applica-
tions in the near future. Therefore, in this paper we just deal with
a set of necessary criteria which we believe that most visualization
results (DVRIs) should satisfy.

The necessary criteria include four independent effectiveness
measures which evaluate the effectiveness of a DVRI from four ef-
fectiveness aspects, i.e., the distinguishability of features, the clarity
of contours, the edge consistency between DVRIs and the volume,
and the depth coherence between features. To the best of our knowl-
edge, these are the first generic quantitative effectiveness measures
for DVRIs. Based on the proposed measures, a new visualization
system is developed by integrating the quantitative effectiveness
evaluation into the visualization pipeline. With the help of our sys-
tem, various effectiveness issues in DVRIs can be identified in vi-
sualization automatically. We believe that it is a first step towards
automatic effective DVR.

2 PREVIOUS WORK

Visualization Evaluation has been viewed as one of the top re-
search challenges by many famous visualization scientists in the
joint NSF-NIH Fall 2004 Workshop on Visualization Research
Challenges [13]. Van Wijk [22] proposed an economical model
of visualization and exploited it to assess the value of visualiza-
tion from the viewpoint of technology, innovation, art, design, and
science, respectively. In our paper, we evaluate the effectiveness
in the visualization process mainly from the technology viewpoint.
Recently, user studies have attracted much attention from the com-
munity and have been used to examine the effectiveness of visual-
ization results [7]. However, it often takes a long time and many
resources for researchers to design and conduct appropriate user
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Very Good

Figure 1: User interface for our system: (a) Region for adjusting pa-
rameters for DVR; (b) Region for presenting the DVRI; (c) Region for
providing effectiveness feedback; (d) Region for specifying the trans-
fer function.

studies and analyze the results [10]. Tory and Möller proposed to
exploit expert evaluation when user studies fail [20]. Compared
with the previous methods that validate the effectiveness for the
visualization experts to improve their systems, our measures pro-
vide quick quantitative effectiveness feedback to end users auto-
matically.

Volume Exploration by automatically selecting good views is
also closely related to the effectiveness of visualization, as good
viewpoints may deliver informative results that can effectively re-
veal the features in a volume [1, 19]. Our framework addresses
a different problem and focuses on automatic effectiveness evalu-
ation of the DVRIs rendered from a set of viewpoints which are
either generated automatically by these methods or selected man-
ually by users. Transfer function (TF) plays an important role in
volume exploration [21]. Kaufman and Mueller provided an ex-
cellent survey on TF design [8]. Despite the great advance in the
research of TF design, automatic TF specification is still very diffi-
cult and user interaction is usually needed [14]. However, the user
interaction in specifying TFs may introduce errors and is less reli-
able. Thus, quantitative effectiveness evaluation and feedback will
be very helpful in guiding users through a visualization process.

Image Quality Assessment is a well investigated problem in
image and video processing. A comprehensive review on this is
beyond the scope of this paper and interested readers can refer to
[2] for further details. We review only some closely related work
in volume visualization. Meißner et al. [12] compared four vol-
ume rendering algorithms by considering image quality and com-
putational complexity. Wang et al. [23] developed an image-based
quality measure to facilitate interactive level-of-detail exploration
for large volumes. Their measure assesses the quality of images
by efficiently measuring the contribution of multi-resolution data
blocks to the final images. An automatic image enhancement ap-
proach was introduced by Chan et al. [3] using a quality measure
for evaluating the image contrast based on the information obtained
from the images as well as the volumetric data. Compared with
the previous quality assessment approaches, our measures focus on
the generic and important effectiveness issues of DVRIs which end
users can easily understand. Some ambiguous and misleading in-
formation can be identified by our measures as well. To the best
of our knowledge, these issues have not been thoroughly addressed
before in volume rendering.

3 SYSTEM OVERVIEW AND USER INTERFACE

Our system is a comprehensive DVR system equipped with quan-
titative and automatic effectiveness evaluation as well as intuitive

Figure 2: Three features in purple, blue, and green are composited
with opacity 0.5, 0.5, and 1. The purple feature cannot be distin-
guished from the blue feature after composition.

and quick effectiveness feedback. Fig. 1 shows the user interface
of our system which can be divided into four parts: Region (a)
is for adjusting parameters such as lighting settings and sampling
rates; Region (b) presents the resulting DVRI; Region (c) is used
to provide quantitative effectiveness feedback to users; Region (d)
is for specifying the transfer function. The effectiveness evalua-
tion mechanism built upon our proposed quantitative effectiveness
measures can assess the effectiveness of a DVRI or a whole visual-
ization process.

Following a well-known InfoVis principle - “Overview first,
zoom and filter, then details-on-demand” proposed by Shneider-
man, the system provides the effectiveness feedback to users at dif-
ferent levels of detail, i.e., the semantic level, the middle level, and
the detail level based on users’ demands. At the semantic level, our
system shows a semantic term (“very good”, “fairly good”, “not
good”, or “bad”) summarizing the overall effectiveness in the left
top corner of Region (b) in Fig. 1, such that users can have a ba-
sic idea of the effectiveness with minimum distraction. The sys-
tem estimates the overall effectiveness by a weighted average of
effectiveness values computed by different effectiveness measures.
The system treats all measures equally important and thus set their
weights to be 1. At the middle level, the system provides users with
moderate details about the effectiveness through an effectiveness
graph (see Region (c) in Fig. 1). In the graph, the horizontal axis
represents the DVRIs that we have explored and the vertical axis
indicates the effectiveness values. The curves in different colors on
the graph represent the effectiveness values computed by different
measures. The effectiveness graph can be updated almost in real
time. Whenever users stop at a certain viewpoint to explore the vol-
ume in detail, the system can utilize the idle time for updating the
graph. At the detail level, it allows users to backtrack to any visu-
alization step by clicking on the effectiveness graph. All settings
will be adapted subsequently to the step and the DVRI shown in
Region (b) will be updated accordingly. It also enables the detailed
effectiveness examination by directly highlighting the detected ab-
normality in the DVRI (see Fig. 4(c) and (e)).

4 EFFECTIVENESS MEASURES

In this section, we introduce four independent effectiveness mea-
sures - distinguishability, edge consistency, contour clarity, and
depth coherence measures - to address the effectiveness issues of
a DVRI from different perspectives.

4.1 Distinguishability Measure

The distinguishability measure evaluates how well features in a
DVRI can be visually differentiated from one another by estimat-
ing the color similarity between the features. It is particularly useful
in DVR. Because of the blending effect in DVR, different features
may appear to be visually similar even if they are assigned distinct
colors in the transfer function (see Fig. 2 for an example).

The measure works as follows: Given a DVRI, the measure first
segments it into a number of regions by an efficient graph-based
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Figure 3: Three DVRIs with varying distinguishability values. The computed effectiveness values for (a), (b), and (c) were 0.17 and 0.43, and
0.85, respectively.

image segmentation algorithm [5]. It then builds a histogram for
each region to show the scalar value distribution of the samples on
the rays cast from the region into the volume. The samples within
homogeneous areas (i.e., the samples that satisfy the condition: g <
ε where g is the gradient value of a sample and ε is a predefined
threshold and ε = 0.05 in our experiments) will be filtered out when
building the histogram. This can ensure that small features will
not be overwhelmed by larger ones in the histogram. For any two
regions, our measure estimates whether they belong to the same
feature by calculating the similarity of their histograms. We employ
the cross correlation method to measure the degree of similarity
between histograms as follows:

r =
∑m

i=1(H1(i)−H1)(H2(i)−H2)
√

∑m
i=1(H1(i)−H1)2 ∑m

i=1(H2(i)−H2)2
(1)

where

• H1 = ∑m
i=1 H1(i)/m and H2 = ∑m

i=1 H2(i)/m

• m is the number of scalar values in each histogram

• H1(i) and H2(i) are the values of the histograms at i

If any two regions with a similar color (the similarity is computed
as the color distance in L*a*b* color space) have a weak correla-
tion, i.e., the pair is likely to be of different features but has a similar
color, they should be viewed as an indistinguishable pair. The effec-
tiveness value can then be derived as the ratio of the distinguishable
pairs over the total number of the pairs.

Fig. 3 presents three DVRIs generated from a neghip protein
molecule dataset (64×64×64). All DVRIs reveal three important
isosurfaces assigned similar opacity but different colors in the trans-
fer functions. However, because of the blending effect introduced
by DVR, the isosurfaces can hardly be distinguished in Fig. 3(a)
and can barely be differentiated in Fig. 3(b). In contrast, we can
easily discriminate the isosurfaces in Fig. 3(c). The computed ef-
fectiveness values for Fig. 3(a), 3(b), and 3(c) were 0.17 and 0.43,
and 0.85, respectively, demonstrating that our measure can success-
fully detect the ambiguity.

4.2 Edge Consistency Measure

Edge consistency is another important effectiveness issue for
DVRIs. According to the Gestalt principle of continuity, humans
are often inclined to observe objects as smooth and continuous [25].
Any false discontinuity (or false edges) shown in DVRIs but actu-
ally not existing in the corresponding volumetric data would likely
confuse or mislead users. In volume visualization, false edges are

usually caused by various artifacts such as filtering artifacts, clas-
sification artifacts, and shading artifacts [4]. These results are of
course ineffective for conveying information to users, and should
be identified in the visualization process. To address the issue, we
propose an edge consistency measure to find any possible false dis-
continuity presented in the DVRIs.

Algorithm 1: ConsistencyAlg

Estimate the edge image E of the input DVRI;1

for Each edge pixel (x,y) in E do2

Cast a ray into the volume data and do ray composition3

like volume rendering;
Let c← the opacity weighted color contribution of all the4

feature lines passed through by the ray;
if c > t then /* t is a threshold */5

Record E(x,y) as a correct edge pixel;6

else7

Record E(x,y) as a false edge pixel;8

end9

end10

Our edge consistency measure works as follows: For each pixel
showing discontinuity (i.e., edges) in the DVRI, our measure checks
whether the ray shoot from this pixel passes through any feature
lines such as silhouettes and valley creases. If the ray does not
pass through any feature lines, then the discontinuity indicated by
this pixel is false and users should be alerted. Algorithm 1 is the
pseudo-code of the measure. The edge image E is extracted by
Canny edge detector and the threshold t is 0.05 in our experiments.

Our measure considers only the most important feature lines -
silhouettes, ridges, and valley creases - in the data for simplicity and
efficiency. For each sample point along a ray, it is straightforward
to know whether it belongs to a silhouette or not by checking |v ·n|
where n is the normal and v is the ray direction at the sample. If
|v ·n|< t where t is a certain threshold, the sample is on a silhouette.
We employ an approach proposed by Kindlmann et al. [9] to detect
the ridge and valley creases, based on the principal curvatures κ1

and κ2 which are evaluated as follows:

κ1 =
T +
√

2F2−T 2

2
,κ2 =

T −
√

2F2−T 2

2
(2)

where T and F are the trace and Frobenius norm of G, respectively,
and G =−PHP/|g| and P = I−nnT, and n =−g/|g|where g is the
gradient and H is the Hessian matrix of the sample point. We can
then compute the edge consistency effectiveness value of the input
DVRI as e = n1/(n1 +n2) where n1 and n2 are the numbers of the
correct edge pixels and false edge pixels, respectively.
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Figure 4: The measured edge consistency values for (a), (b), and (d) are 0.95, 0.7, and 0.3, respectively; (c) and (e) highlight the false edges of
(b) and (d), respectively, using red strokes.

Fig. 4(a), (b), and (d) show three DVRIs generated from a CT hu-
man foot volume data set (152×261×220) with different amounts
of false edges. The false edges are mainly caused by the classifi-
cation artifacts introduced by inappropriate transfer functions. The
measured edge consistency values for the three DVRIs are 0.95, 0.7,
and 0.3, respectively. Fig. 4(c) and (e) highlight the false edges of
Fig. 4(b) and (d), respectively, using red strokes. The blue strokes
represent the correct edges. We have also tested the measure on
DVRIs with false edges caused by other types of artifacts such as
filtering artifacts, and found that the measure also worked well and
could identify the false edges effectively.

4.3 Contour Clarity Measure

The clarity measure evaluates how clear the contours of important
isosurfaces are presented in a DVRI. In volume rendering, isosur-
faces are often set to be semi-transparent and are blended with one
another, and thus their contours may become fuzzy and unclear in
DVRIs. The unclear contours could confuse or even mislead users
as the contours are important clues that help people perceive 3D
structures correctly [25]. Thus, the measure is useful and necessary
for evaluating the effectiveness of DVRIs. The measure first identi-
fies some important isosurfaces from the DVRI, and then estimates
the contour clarity of the isosurfaces in the DVRI.

The isosurfaces can be estimated by taking into account the
edges of the DVRI as well as the volumetric information, since the
isosurfaces can usually be represented by the edges in the image.
The algorithm of detecting the important isosurfaces works as fol-
lows: It extracts the edges in the DVRI by the Canny edge detector,
and builds a histogram of the scalar values of the samples in the
volume on the rays cast from the edge pixels. In addition, the sam-
ples must be on the feature lines in the volume (see Section 4.2 for
the detection of the feature lines) to filter out irrelevant samples.
Finally, the important isovalues can be detected by estimating the
peaks of the histogram, and so the important isosurfaces can be de-
tected accordingly. The important isosurfaces that can be detected
by the measure are not necessarily identifiable for end users.

After the isosurfaces are obtained, the measure renders the iso-
surfaces separately into an isosurface DVRI. Two edge images are
created to store the edges extracted from the original DVRI and
the isosurface DVRI by the Canny edge detector, respectively. The
measure then compares the edge images to determine the clarity of
the isosurfaces’ contours in the DVRI. We propose a new method
called Block Correspondence measure (BCM) extended from Pixel
Correspondence measure (PCM) [15] for the comparison.

The PCM transforms the image comparison problem into an op-
timal matching problem which is to find a matching with a mini-
mum accumulated cost of each match in a bipartite graph G. The
bipartite graph can be defined as follows: Let G(V,E) be a graph
where V and E represent the set of the vertices and the set of edges,
respectively. A bipartite graph is a graph G(V,E) where V can be
divided into two disjoint sets V + and V− such that the end-points
of each edge should belong to different sets of vertices. A match-
ing M is a subset of E in which no two edges share a vertex. A
vertex is matched if it is incidental to an edge of M or otherwise
unmatched.

Suppose f (i, j) and g(k, l) are two pixels in two edge images f
and g, respectively. PCM treats the pixels in g as V+ and the pixels
in f as V−. The set of edges (E) contains all the edges defined
as follows: An edge between f (i, j) and g(k, l) exists if max(|k−
i|, |l− j|)≤η where η is the maximum localization error and η = 3
in our implementation. In other words, f (i, j) should be matched
from the neighbors of pixel (i, j) in g within radius η . The cost of
a match between f (i, j) and g(k, l) is defined as:

C( f (i, j),g(k, l)) = 1−S((i, j),(k, l))(1− | f (i, j)−g(k, l)|
Z

) (3)

where Z is the maximum pixel value in g and f , C is between 0 and
1 where 0 indicates a perfect match of the two pixels, and separation
S is defined as:

S((i, j),(k, l)) = W (max(|k− i|, |l− j|)), (4)

where W (d) is a normalized function defined as W (d) =
1,0.9,0.69,0.5|d = 0...3. It penalizes the distance in a 2D image
space between the pixels. The similarity between two edge images
f and g can be computed as:

PCMη ( f ,g) = 1−ζ (Mopt( f ,g))/| f
⋃

g|, (5)

where Mopt is an optimal matching between f and g,
ζ (Mopt( f ,g)) is the accumulated cost of the matches in Mopt be-
tween f and g, and | f ∪ g| indicates the number of the non-zero
pixels in f or in g. Note that if there is any pixel (i.e., unmatched
vertices in graph G) in g and f left unmatched, PCM adds its pixel
value to ζ . Finally, we can apply an algorithm [17] to find the opti-
mal matching.

Although PCM adopts an approximation to the optimal match-
ing, it is still time-consuming. Thus, we propose BCM to accelerate

4

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 06,2010 at 01:36:32 UTC from IEEE Xplore.  Restrictions apply. 



0

20

40

60

80

100

120

140

160

1 31 61 91 121 151 181 211 241

Figure 5: (a)-(d) Four DVRIs with varying contour clarity (0.47, 0.56, 0.14, and 0.92, respectively); (e) A histogram built by the clarity measure to
estimate the isosurfaces presented in (a).

the performance. BCM is based on blocks instead of pixels, and so
we first divide each edge image with the size X ×Y into a set of
blocks. Let f (ib, jb) and g(kb, lb) be two blocks in f and g, re-

spectively, and ib,kb ∈ [0, X
m ) where m is the height of the block,

and jb, lb ∈ [0, Y
n ) where n is the width of the block. In our exper-

iments, we set m = n = 2 and found that our algorithm runs much
faster than PCM while maintaining accuracy. BCM computes the
cost of a match C( f (ib, jb),g(kb, lb)) between two blocks f (ib, jb)
and g(kb, lb) as:

1−S((ib, jb),(kb, lb))(1−
‖ f (ib, jb)−g(kb, lb)‖F

Z| f (ib, jb)∪g(lb,kb)|
) (6)

where ‖ f (ib, jb)−g(kb, lb)‖F is the Frobenius norm - the most fre-
quently used matrix norms in numerical linear algebra. | f (ib, jb)∪
g(lb,kb)| is the number of non-zero pixels in block f (ib, jb) or
g(kb, lb). Finally, the BCM similarity value between two edge im-
ages f and g can be computed as:

BCMη ( f ,g) = 1−ζ (Mopt( f ,g))/| f
⋃

g|b, (7)

where | f ⋃

g|b is the number of non-zero blocks in f or in g.
Fig. 5(a)-(d) show four DVRIs generated from a CT Chest vol-

ume (384× 384× 240) with varying contour clarity. A histogram
in Fig. 5(e) is built by the measure to estimate the important isosur-
faces in Fig. 5(a). The identified isovalues are 58 and 119. With the
important isosurfaces, the measure performs the BCM algorithm to
quantify the contour clarity of Fig. 5 (a), and the measured effec-
tiveness value is 0.47. Similarly, the contour clarity values for Fig.
5 (b), (c), and (d) are 0.56, 0.14, and 0.92, respectively. This is
quite consistent with our observation, demonstrating that the mea-
sure can successfully evaluate the contour clarity of DVRIs.

4.4 Depth Coherence Measure

Coherence properties, such as depth coherence, spatial coherence,
and image coherence, have been widely exploited in computer
graphics. Among those coherence properties, the depth coherence,
which denotes that the depth at a surface point changes gradually to
its neighborhood, is often assumed by users when they are inspect-
ing the surface of a specific feature. The incoherence between the
depth of the feature perceived by users in 2D images and the real
depth in 3D volumes usually results in ambiguity. For example,
in vascular volume visualization, separate branches may appear as
one branch in the 2D image because of the depth incoherence. To
address the problem, we design a new algorithm to automatically
detect the depth incoherence in DVRIs.

The measure works as follows: It first obtains a layered depth
image (LDI) [18] for the DVRI and then checks the depth coher-
ence of different features. The system casts rays into the volume
and records the depth values of the surface layers (which can be de-
termined by gradient magnitude [16]) that each ray passes through
into a LDI. After that, the system performs a low-level over segmen-
tation using the watershed algorithm for the DVRI to get a number
of atomic regions. An efficient high-level graph-based segmenta-
tion [5] is also performed to simulate how users group or merge
the atomic regions. If two adjacent atomic regions (A and B) are
expected to be merged by the high-level segmentation algorithm,
which means users tend to perceive these two regions as one fea-
ture, the system will check whether depth coherence exists for these
two regions. To do so, for each pixel i on A’s boundary adjacent to
B, we compare its stored set of depth values to the set of depth val-
ues of its neighboring pixel on B’s boundary. If these two sets of
depth values do not have any match, the pixel i is viewed as an in-
coherent pixel. If most of the pixels on A’s boundary adjacent to
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(a) (b) (c)

Figure 6: A DVRI and its depth image and overly segmented image where some depth incoherence exists.

B are coherent pixels, A and B are coherent in depth, or otherwise
incoherent.

The depth coherence value e of a certain DVRI can be estimated
as the ratio of the number of coherent pairs over the number of all
adjacent pairs examined by the above algorithm. The pseudo-code
of the measure is shown in Algorithm 2.

Algorithm 2: CoherenceAlg

Cast rays into the data and obtain a LDI;1

Perform a watershed algorithm to obtain a overly segmented2

image I0 from an input DVRI;
Perform a graph-based algorithm to obtain a segmented image3

I1 from the input DVRI;
Scan I0 and build a 2D array A with the size of n×n, where n4

is the number of atomic regions in I0 and A[i][ j] stores the sets
of depth values obtained from the LDI of the boundary pixels
of region i adjacent to region j;
Let c← 0 and num← 0;5

for Each region k in I1 do6

for Each pair (m,n) of the adjacent regions of I0 in k do7

if A[m][n] is different from A[n][m] then8

Record (m,n) as incoherent pairs;9

else10

c← c+1;11

end12

num← num+1;13

end14

end15

Output the effectiveness value: e = c/num;16

Fig. 6(a) is a DVRI generated from a CT aneurism volume
(256× 256× 256) where depth incoherence exists. For example,
two separated small branches in the red rectangle appear like one
branch. Fig. 6(b) is the depth image of Fig. 6(a) where a yellow-
to-blue color encoding scheme is used to represent the depth from
close to far. Fig. 6(c) is the overly segmented image of 6(a). This
abnormal case can be detected by our coherence measure success-
fully and the measured coherence value is 0.77.

4.5 Effectiveness for A Whole Visualization Process

Besides the effectiveness assessment for each DVRI, our system
can also evaluate the effectiveness of a whole visualization which
consists of a set of DVRIs. For each measure, we collect all view-
points that have been explored so far. For each explored viewpoint,
the system would record a highest effectiveness value for each mea-
sure and treat it as the measure value at this viewpoint for the whole

process. For example, if an unclear contour in a DVRI becomes
clear in a new DVRI from the same viewpoint, we believe the con-
tour is well revealed from this viewpoint and the system would store
the effectiveness value of the new DVRI for this viewpoint.

Among all explored viewpoints’ recorded effectiveness values,
we can treat the lowest effectiveness value as the measure’s effec-
tiveness value of the process. For instance, as long as a contour is
not well revealed from one viewpoint, the whole process should not
be considered effective as an important piece of information is still
missing for this viewpoint. To improve the effectiveness value for
the whole process, users should go back to the viewpoint and fix the
problem if this viewpoint is important, or delete the cached DVRIs
of this viewpoint if this viewpoint is not important.

5 EXPERIMENTS AND DISCUSSION

In this section, we demonstrate the usefulness of our measures in
an informal user study and a case study. The system was tested on
an IBM laptop T61p (2.4GHz Intel Core 2 Duo, 2GB RAM, NV
Quadro FX570M (256MB)). Each measure can be computed quite
fast. Together, our system needs one or two seconds to measure the
effectiveness of a DVRI.

5.1 User Evaluation

Six participants (four doctors, one biologist, and one medical imag-
ing expert) from different fields were invited to evaluate our system.
The four doctors are from two hospitals and one medical school.
They have used commercial medical systems such as “Mimics
Medical Imaging Software” for pre-surgery planning of orthope-
dical surgeries, “Volume Viewer Plus” at GE’s Advantage Work-
station to do radiation therapy planning, and Siemens’s “Syngo So-
maris/5 VA47C” for surgery planning. One doctor in the cardio-
respiratory department of a hospital uses DVRIs for daily medical
diagnoses. The biologist and the medical imaging expert have used
some VTK-based volume visualization systems for their own re-
search.

5.1.1 Evaluation Procedure

The user evaluation includes three steps. We first introduced our
effectiveness measures to the subjects, and then asked them to rate
their understanding and the usefulness of each measure in their ar-
eas. After that, the subjects used our system to freely explore four
typical volumetric datasets, including a CT Foot dataset (152×
261×220), a CT visible full human body dataset (512×512×626),
an MRI knee dataset (512×512×87), and a CT Aneurism dataset
(256× 256× 256); Finally, the subjects were asked to give feed-
back about the performance of each measure and the intuitiveness
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Figure 7: Average ratings of the understanding and usefulness of the
measures.

and the usefulness of the system as well as any suggestion for fu-
ture improvements. It took each subject on average one and a half
hours to finish the evaluation.

5.1.2 Evaluation Results

Fig. 7 shows the average ratings on the understanding and useful-
ness of the measures from the user evaluation. Qualitatively, we can
see that all measures were received well and were rated relatively
high by the participants. All participants had a good understanding
(above 3.9 in average) of all the effectiveness measures, and did not
have any problems differentiating four measures. They also felt that
the measures would be useful for different applications. Among the
four measures, some of them were especially appreciated by the
participants. One doctor from the Cardio-respiratory Department
especially liked the depth coherence measure, as the measure could
help him fix the depth ambiguity which usually occurs in vascu-
lar volume visualization. One radiologist from the department of
radiation oncology appreciated the edge consistency measure. He
often noticed some suspicious artifacts using his current systems,
but he was not sure whether they were really artifacts or just data
features. He was glad that the system can automatically tell him
whether these are artifacts or not. They confirmed that some mis-
leading information could be detected with the help of our system.
Our level-of-detail effectiveness feedback mechanism was also re-
ceived quite well. They all believed our approach has high potential
and wanted to see these features in their systems because these mea-
sures and the built-in assessment made them feel more confident in
the visualization results.

5.1.3 Suggestions

The participants provided some helpful suggestions for future im-
provements. These included:

• A more detailed description about a sudden change of an ef-
fectiveness value in the effectiveness graph to clarify the rea-
son of the abnormal change.

• A mechanism to inform users when the effectiveness of the
whole visualization is sufficiently good or warn the user if it
is bad.

• An automatic approach to correct the detected errors or tell
users how to improve the effectiveness.

We also received some unexpected feedback. Our effectiveness
measures were previously named as effectiveness metrics. How-
ever, the biologist pointed out that the term “metric” sounds too
technical and may have different meanings in other fields and thus
suggested we call it measure instead of metric. Our system previ-
ously provided an additional measure called entropy measure which
can evaluate the correlation field of volume entropy and DVRI en-
tropy based on information theory. We originally thought it would
be quite useful for data exploration because it can measure whether
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Figure 8: Effectiveness graphs for a typical visualization. : upper
graph shows the effectiveness values for each DVRI and the bottom
graph is the corresponding accumulated effectiveness graph. Color
encodes the measure types.

the entropy in a volume region matches the entropy in the corre-
sponding DVRI region and thus provide a high level effectiveness
evaluation. However the feedback from the participants was disap-
pointing. Most of the participants had problems to understand the
concept and also did not know how to improve the rendering if the
measure indicates a low effectiveness value. Therefore, we finally
decided to remove it from our system.

Overall, all participants gave us very positive feedback, which
indicates that our framework is useful and promising for volume
visualization. The user evaluation confirmed the usefulness of the
measures and identified several avenues for future study and devel-
opment. However, as the user evaluation was just an initial study
and was not conducted in real applications, it has some limitations.
In future, we will integrate our framework into a real medical sys-
tem to perform further testing.

5.2 Case Study

In the case study, we analyze the effectiveness feedback for a typical
visualization, selected from the user evaluation, in which the user
freely explored the CT human full body volume. The goal of the
case study is to demonstrate the usefulness of our system for provid-
ing quantitative effectiveness feedback to users. Fig. 8 shows two
effectiveness graphs - the upper graph shows the effectiveness val-
ues of each measure for each frame, and the bottom graph presents
the effectiveness values from the beginning of the visualization to
each frame.

From the upper effectiveness graph, we can see that the depth co-
herence values are around 0.95 in the visualization, indicating that
the structures in the data are coherent in depth at any time frame in
the visualization. The distinguishability and contour clarity curves
are similar. This is reasonable as a feature that is easy to distinguish
usually has clear contours. However, in the upper graph for DVRIs
around time frame d highlighted by a red vertical dashed line, the
distinguishability and contour clarity values are different. This case
has also been demonstrated in Fig. 3(a) where the distinguishability
value is 0.17 and clarity value is 0.8, which is fairly consistent with
our observation. The effectiveness values of the edge consistency
are not as good as others and are below 0.5 for most of the DVRIs.
After investigation into the visualization, we found that the problem
was mainly caused by the classification artifacts introduced by the
improper transfer functions.

The effectiveness graph in the bottom describes the lowest ef-
fectiveness values of the visualization process, which keep track of
the viewpoints where the data were not well revealed. For example,
although the contour clarity value of the DVRI at frame b is high
(in the upper graph), the corresponding effectiveness value of the
whole process (at the bottom graph) is still so low, as from a typ-
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ical viewpoint (from which the DVRI at frame a was created) the
contours of the features are unclear and this is not fixed in the fol-
lowing several DVRIs. After being notified by the graph, the user
went back to the same viewpoint at frame a and made the contours
clearer by adjusting the opacity transfer function, which greatly im-
proved the effectiveness of the whole process (as shown at position
c in the bottom graph). The visualization graphs also indicate that,
in the whole visualization process, the contours of the important
feature were not quite clear but still over 0.5 in average and there
were some false discontinuities.

5.3 Discussion

The experiments have clearly demonstrated the usefulness of our
measures. Each measure targets a quite unique effectiveness prob-
lem which cannot be addressed by any other measures. There is
usually no correlation between different measures and they are in-
dependent from one another, as demonstrated in the case study.
Thus, they are all useful for some applications. However, not all
measures are useful in all applications. The usability of a specific
measure depends on the underlying data as well as the applications.
For example, the coherence measure becomes useless when there
are only a few features and their spatial relations are clear in the
data.

The effectiveness of DVRIs is a complicated issue and depends
on tasks, algorithms, and systems. Formal user studies and expert
reviews are still indispensable for effectiveness evaluation at a high
level. We only focus on the generic effectiveness measures that can
be quantitatively computed and readily integrated into typical visu-
alization systems, providing users with the feedback on the integrity
and correctness of the presented information. These measures are
especially valuable for end users when they need to interactively
fine tune the results. Automatically generating DVRIs that satisfy
these measures is very difficult and it involves transfer function de-
sign, viewpoint selection, lighting design, and anti-aliasing. Be-
cause of the huge search space, typical optimization methods may
fail. We will investigate this issue in future.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present four effectiveness measures: distinguisha-
bility, contour clarity, depth coherence, and edge consistency mea-
sures for evaluating the effectiveness of a DVRI. Based on our
measures, a new visualization system with built-in automatic effec-
tiveness assessment has been developed. Users will be quickly in-
formed about the effectiveness of the DVRIs in visualization. Am-
biguity like depth incoherence in DVRIs could be identified eas-
ily. We believe that our measures can facilitate the wider adoption
of visualization techniques in some real applications. Our system
focuses on detecting the effectiveness problems but cannot fix the
problems automatically. Automatic generation of effective results
based on our effectiveness measures is worth further study. An-
other avenue for our future study is to conduct a formal task-based
user study to assess the appropriateness of each measure in differ-
ent applications. We also plan to study the influence of the human
perception and cognitive factors to the effectiveness of DVRIs, and
integrate computational cognitive models to our measures.
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