
Controllable and Progressive Edge Clustering for Large
Networks

Huamin Qu, Hong Zhou, and Yingcai Wu

Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong
{huamin,zhouhong,wuyc}@cse.ust.hk

Abstract. Node-link diagrams are widely used in information visualization to
show relationships among data. However, when the size of data becomes very
large, node-link diagrams will become cluttered and visually confusing for users.
In this paper, we propose a novel controllable edge clustering method based
on Delaunay triangulation to reduce visual clutter for node-link diagrams. Our
method uses curves instead of straight lines to represent links and these curves can
be grouped together according to their relative positions and directions. We fur-
ther introduce progressive edge clustering to achieve continuous level-of-details
for large networks.

1 Introduction

Many visualization problems can be modeled using node-link diagrams or networks,
where nodes represent data elements and links their relationships. For example, hyper-
links among Internet webpages, citations in scientific papers, traffics between telecom-
munication switches, and airline routes can all be represented by node-link diagrams.
As the amount of data from real world keeps increasing, visual clutter becomes a very
serious problem for large networks and greatly affects the effectiveness of networks for
conveying information.

Visual clutter is usually caused by an excessive number of nodes and links. Visual
clutter for edges caused by too many edge crossings is also called edge congestion [1]
[2]. Too many crossings of links will obscure some nodes and links in the graph. Various
filtering and clustering methods [3] can be used to effectively reduce the number of
nodes and thus the number of links. However, simply reducing the number of nodes
is not a practical solution for some applications. For example, in typical airline routes,
removing a node will cause the lost of route information for an airport. Clustering of
nodes may not be a good solution either. Users may have problems to relate the links
coming in or out of virtual clustered nodes to real links.

Edge congestion is a challenging problem and many approaches have been proposed.
Edge crossings can be reduced by rearranging the nodes and edges. Various force-based
or energy-based node layout algorithms for graphs [4] can generate good layouts for
small-size graphs according to some aesthetic criteria including minimum edge cross-
ings. However, for large graphs, edge crossings usually cannot be reduced to a satis-
fying level. Some researchers try to totally avoid edge crossings by making the graph

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 399–404, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

400 H. Qu, H. Zhou, and Y. Wu

planar [5]. However, large graphs usually cannot be drawn in a planar way. For some ap-
plications such as communication and transportation networks, the semantic meanings
of the node positions limit the room of adjustment for nodes.

Edge congestion can be alleviated by merging edges and drawing edges as curves.
Phan et al. [6] proposed a flow map layout to reduce visual clutter by merging edges.
The flow map layout is generated by hierarchical clustering. The node positions are dis-
torted but relative positions are maintained in their algorithm. Their method is mainly
designed for single-source node-link diagrams although the authors mentioned that their
methods can be extended for multiple-source networks by overlapping multiple flow
maps. Carpendale and Rong described an interesting technique to examine edge con-
gestion around node areas by adjusting the edge position if the edge passing through the
node [1]. They used an edge-displacement algorithm to curve away all edges from the
region of interest. Wong et al. [2] introduced EdgeLens to manage edge congestion in
graphs. They pointed out that the relation between vertices might be displayed ambigu-
ously if their edges overlap. Their solution is to introduce a lens which displaces edges
in a local area with dense edge overlapping and reveals hidden information in that area
and clarifies graph structures. While the EdgeLens is quite effective to make the edges
in a small area more discernable, the visual clutter of the overall graphs is not reduced
and the large-scale patterns cannot be effectively revealed by this method. Wong and
Carpendale further introduced Edge Plucking [7], an interesting interactive technique
which allows users to temporarily pluck edges apart to clarify node-edge relationships.

In this paper, we describe a controllable and progressive edge clustering method to
address edge congestion for large network visualization. Our research follows the same
direction of some previous work [1, 6]. Our method first connects the nodes by De-
launay triangulation and then sets some control points on the Delaunay edges of these
triangles. After that, we convert all links into a series of paths consisting of these control
points. By adjusting the number and positions of these control points, different levels of
edge clustering can be achieved. By setting a minimum distance between these control
points and the original nodes, the ambiguity cases in the traditional node-link diagrams
can be avoided. By grouping links together, the high level linkage patterns related to
the whole node-link diagram can be revealed. Compared with node-clustering methods,
our method can reveal the linkage information for real nodes instead of clustered virtual
nodes. Compared with force-based or energy-based approaches, our method is geome-
try based and all computations (e.g., Delaunay triangulation, ray/triangle intersection,
and K-Means clustering) can be done very efficiently and can be accelerated by graph-
ics hardware. Our method is easy to implement and the generated layouts are visually
appealing. In addition, our approach gives users great flexibility for layout generation.
Users can easily and dynamically change the size of “protected” areas around nodes
and the levels of clustering for links. We further introduce progressive edge clustering
to achieve continuous level-of-details for large networks.

2 Controllable Edge Clustering

In this section, we introduce our method for edge clustering given a set of nodes
and links. We assume that the positions of nodes have been computed by some other

Controllable and Progressive Edge Clustering for Large Networks 401

methods such as force-based models [4] and a relatively good initial layout has been
obtained. We do not further distort node positions. Therefore, their original layout is
preserved. Actually, for certain applications, node positions encode geographic infor-
mation and any adjustment of node positions may cause confusion for users.

(a) (b) (c)

(d) (e) (f)

Three Control
Points

(g)

One Control
Point

(h)

Fig. 1. Framework of our method: (a) Original node-link diagram; (b) Delaunay triangulation of
the original nodes; (c) The intersection points of all links and Delaunay edges indicated by the
red dots; (d) The control points computed by clustering the intersection points; (e) All links are
forced to pass through the control points; (f) Protected areas for nodes; (g) Three control points
on a Delaunay edge; (h) One control point on a Delaunay edge

Figure 1 shows the framework of our method. Figure 1 (a) shows the original node-
link diagram. We first compute a Delaunay triangulation of the points given by the
positions of the vertices (See Fig. 1 (b)). Then, for each link, we compute the intersec-
tion points of this link with the Delaunay edges (See Fig. 1 (c)). For each Delaunay

402 H. Qu, H. Zhou, and Y. Wu

edge, we cache all the links passing through this Delaunay edge and their intersection
points with this edge. Then we assign one or more control points on each Delaunay
edge and use these control points to cluster links (See Fig. 1 (d)). The control points
can be clustered using the K-Means algorithm. Later, the number and positions of these
control points can be adjusted by users to achieve different levels of clustering. After
that, we force all the links to pass through these control points and compute a path con-
sisting of these control points for each link (See Fig. 1 (e)). Some overlapping paths
will be then grouped together by the system or by users. In this paper, all the paths are
drawn as Nurbs curves.

By forcing all links to pass through control points on the Delaunay edges, we can
easily solve the ambiguity cases for node-link diagrams. We can set up a “protected
area” for each node by forcing the control points to be at lease certain distance away
from the node. If only one control point is used on each Delaunay edge, the protected
area for each node can be as large as half of the minimum distance from this node to its
neighboring nodes. If two or more control points are used, then we can easily control
the size of the protected areas for nodes. In practice, we can compute this size based on
the importance of the nodes if any criterion for importance is given by users. The size
of protected areas can also be adjusted by users during the visualization process. Figure
1f shows the protected areas for two nodes.

Because all links have to pass through the control points on Delaunay edges, then
some link segments will be automatically clustered and some flow-map-style effect can
be achieved. In practice, we can start from the coarse level and gradually refine edge
clustering. First, we assign only one control point on each Delaunay edge and then
we compute the shortest paths consisting of these control points for all links. Then we
examine all incoming and outgoing links for each node. For all paths passing through
the same set of control points, we group that parts of links together. After finding all
the overlapping path segments for all links, we put more control points on the Delaunay
edges so the directions of links will be closer to their original directions.

The level of clustering can be controlled by users. We provide an interface which
allows users to dynamically change these parameters so the node-link diagrams can
be examined at different level-of-details. There are two major parameters users can
adjust: the number of control points on Delaunay edges and their positions. We use the
following principles to position control points: For short or unimportant Delaunay edges
(i.e., edges with only a few or even zero link passing through), there are fewer control
points; The positions of control points will be close to the real intersection points of
the links and the Delaunay edges. Figure 1 (g) and (h) show different levels of edge
clustering by adjusting the number and positions of control points on a Delaunay edge.
From the figure we can see that our layout is visually appealing and our method gives
users great flexibility to control the final layout.

3 Progressive Edge Clustering

If there are too many nodes and links, even clustering all links on all Delaunay edges
cannot solve the visual clutter problem. Inspired by progressive mesh simplification [8],
we propose progress edge clustering by collapsing Delaunay edges. As illustrated in

Controllable and Progressive Edge Clustering for Large Networks 403

Figure 2, if we collapse one Delaunay edge (or two nodes), then the total number of
Delaunay edges will be reduced and the links will become smoother and more space
will be available for positioning nodes and links. Progressive edge clustering is based
on collapsing Delaunay edges one by one so that at each step only one Delaunay edge
disappears. There are two major issues for progressive edge clustering: the order of
collapsing for Delaunay edges and the new position of the node(s) after collapsing one
Delaunay edge. We use the following criteria to determine the order in which vertices
collapse: The length of the Delaunay edges; The number of links passing through the
Delaunay edges; After the collapsing, the maximum distance of the newly positioned
paths to the original links and the curvatures of these paths. The short Delaunay edges
with less links passing through will be clustered first.

Collapse

(a)

Collapse

(b) (c)

Fig. 2. Progressive edge clustering: (a) Traditional node-link diagram; (b) Collapse one Delaunay
edge; (c) Collapse another Delaunay edge

For the new position of the collapsed nodes, we consider two choices. First, the
nodes are still at their original positions. Only the “road” becomes unavailable so all
links passing through this Delaunay edge have to go through the neighboring control
points. Second, these two nodes overlap and share one position. For example, these
two nodes can assume the position of one of the original nodes or are moved into a new
position such as the middle point of the Delaunay edge. We provide an interface to allow
users to decide the new position(s) of the nodes associated with the collapsed Delaunay
edge. Please notice that our focus is not to cluster nodes, as there are many excellent
papers on this topic. Therefore, these nodes only overlap in 2D space and links are still
associated to their original nodes instead of one abstract virtual node. We want to group
more links together by progressive edge collapsing so that different level-of-details for
large networks can be achieved and the visual clutter problem can be alleviated. Figure
2 illustrates progressive edge clustering.

404 H. Qu, H. Zhou, and Y. Wu

4 Conclusions and Future Work

In this paper, we proposed a geometry-based edge clustering method for traditional
node-link diagrams. Our method is easy to implement and can generate visually ap-
pealing layouts for large networks in real time. By setting control points on Delaunay
edges to control the flow of links we can easily obtain different levels of edge cluster-
ing. The classic ambiguity cases for node-link diagrams can be easily solved by setting
a protected area for each node. We also proposed progressive edge clustering so that
continuous level-of-details can be generated for large graphs.

In the future, we plan to further analyze the intersection points cached on Delau-
nay edges and automatically generate some road-map style layout for large graphs. Our
method can be further improved if combined with some node layout adjustment algo-
rithm to make edge merging more effective. We plan to use polylines with very small
round corners to display clustered links. More sophisticated progressive edge clustering
techniques which take the graph’s topology into consideration will also be developed.

Acknowledgments

This work is partially supported by HKUST grant DAG 04/05 EG02. We would like to
thank the anonymous reviewers for their valuable comments.

References

1. Carpendale, M., Rong, X.: Examining edge congestion. CHI ’01 extended abstracts on Human
factors in computing systems (2001) 115–116

2. Wong, N., Carpendale, M., Greenberg, S.: Edgelens: An interactive method for managing edge
congestion in graphs. IEEE Symposium on Information Visualization 2003 (2003) 51–58

3. van Ham, F., van Wijk, J.J.: Interactive visualization of small world graphs. (2004) 199–206
4. Noack, A.: Energy-based clustering of graphs with nonuniform degrees. Graph Drawing

(2005) 309–320
5. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: Visualizing

non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1) (2005) 31–52
6. Phan, D., Xiao, L., Yeh, R., Hanrahan, P., Winograd, T.: Flow map layout. IEEE Symposium

on Information Visualization 2005 (2005) 219–224
7. Wong, N., Carpendale, S.: Interactive poster: Using edge plucking for interactive graph ex-

ploration. Poster in the IEEE Symposium on Information Visualization (2005)
8. Hoppe, H.: Progressive meshes. Proceedings of ACM SIGGRAPH ’96 (1996) 99–108

	Introduction
	Controllable Edge Clustering
	Progressive Edge Clustering
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

