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Abstract—Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses
have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course
videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies
have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a
detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a
comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the
“peaks” or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with
glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the
peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews
conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning
behaviors in MOOC platforms have been reported.
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1 INTRODUCTION

MASSIVE open online courses (MOOCs) have attracted
considerable public attention over the past few years [1], as

such media offer a wide range of courses with high temporal and
spatial flexibility. Three major MOOC platforms (edX, Coursera
and Udacity) were launched in 2012, and since then, Coursera
alone has attracted 11.8 million users as of March 2015 [2].

Several MOOC platforms record web log data, including
not only basic information about the learners, but also their
interaction activities with videos (e.g., clickstreams, click actions on
different videos at various times) and in forums (e.g., forum posts
and interactions with one another). Thus, a massive amount of
data is generated for analyzing learning behaviors at a refined
granularity [3]. Several analytics systems have been built to
visualize such clickstream data [4], [5], [6]. However, these systems
mainly focus on the aggregate behaviors of learners.

We have been collaborating with MOOC instructors in our
university since January 2014, and a visual analytic system called
VisMOOC [7] has been developed to help assist these instructors
in analyzing online learning behaviors based on video clickstream
data from Coursera. By observing how instructors use VisMOOC,
we note that they spend a considerable amount of time on certain
regions with a short period of sudden increase in click actions. We
hereafter refer to such periods as the video clickstream “peaks”.
To clarify why instructors focus on peaks, we conducted multiple
discussion sessions with the instructors. We determined that in
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general, peaks are critical to helping instructors understand how a
group of users actively reacted to course videos. For example, if an
unexpectedly high occurence of pausing or backward seek activities
is observed at a certain segment, then this segment is probably
difficult or confusing and thus requires additional time watching
and studying. However, if students watch a certain segment without
any additional click behavior, then their feelings on that segment
are difficult to interpret. Therefore, all of the analytical tasks in this
paper focus on analyzing such peaks.

Analyzing the peaks of clickstream data from MOOC videos to
clarify e-learning behaviors poses two challenges. First, the multi-
attribute clickstream data for each course are large in scale owing
to the considerable number of learners watching MOOC videos.
Even after filtering by the peaks, millions of click actions remain
attributed to each course. The emerging urgent problem involves
extracting valuable information from complex and considerable
amounts of data. Following several rounds of interviews with the
domain experts, we summarize the major issues of concern as
follows: a) when analyzing a single peak, the instructors care
about the basic statistics of different click actions in addition to
those who contributes to the peaks. Therefore, necessary data
include the demographic information of these contributors and
the temporal information of these clicks. b) Another concern
raised by the instructors is that abnormal clicks by learners may
generate a strange pattern in the peaks of the clickstream data.
Such abnormality may be misleading when analyzing whether
certain video segments are problematic or interesting to the majority
learners. c) Instructors can improve as online teachers if they can
identify typical learner groups and the correlation among learners
in different peaks. Therefore, a comprehensive visualization system
should be designed to reveal underlying patterns in complex big
data to course instructors and education experts. Such an attempt
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is challenging, but the results are valuable.
Another challenge is that such a visualization system must

be easy to use. An analytical framework [8] has been proposed
recently for researchers who have some programming knowledge;
these researchers adapted a data model to different MOOC
platforms using this framework and integrated the model with
mainstream analytic tools, such as MATLAB. However, system
end users, general course instructors, and education experts have
minimal or even no background knowledge in computer science
or visualization; thus, they must be provided with intuitive visual
designs that can help alleviate learning burden. As per interviews
with the instructors and the education experts we have worked
with, a clear and simple system is essential. To this end, the visual
designs for specific tasks must be examined carefully by end users.

To address these challenges, we present a comprehensive visu-
alization system called PeakVizor that enables course instructors
and education experts to analyze complex online learning patterns
in MOOC video interactions. Our system features three views at
different levels: a) an overview in which glyphs are used to show
basic statistics of the peaks, including the number of clicks, peak
duration, and distribution of users; b) a flow view that presents
the geographical and temporal origins of click actions as well as
the spatio-temporal location of peaks; and c) a correlation view
in which parallel coordinates are integrated with a choropleth
map to reveal the correlation between different learner groups and
the peaks. Furthermore, we carefully design smooth interaction
transitions across different views so that end users can explore
complex patterns more easily by combining the three views. We
follow a user-centered design process and involve domain experts
in every stage of iterative development. To evaluate our final system,
we conducted case studies with several end users; the results further
proved the usefulness and effectiveness of our system.

The main contributions of this paper are as follows:
• A comprehensive visualization system which integrates well-

established visualization techniques and several novel visual
designs to investigate clickstream peaks.

• A study of the temporal and spatial distributions of clicks
in relation to the peaks as well as of the geographic and
behavioral distribution of users who contribute to these clicks.

• A novel glyph design to show the multiple attributes of a
peak so that users can easily identify specific peaks and their
singularity either in the overview or in other co-analysis views.

• Case studies are conducted with real datasets to help instruc-
tors and education analysts gain new insights into online
learning behaviors.

2 RELATED WORK

In this section, we first summarize existing studies on e-learning
analysis. Then, we discuss current works on visual analytics and
visualization techniques for MOOCs. Finally, we present several
studies that focus on clickstream visualization.

2.1 E-learning Analysis
Many studies have been conducted on big data analysis of online
education. Some studies analyze log data on learning behaviors,
such as student access and activity patterns [9], [10], and forum
interaction [11]. Student access and activity patterns include what
(the type of material), how much (the percentage of the material),
how long (how many times), and when (in real time) with respect
to viewed content, as well as to dropout behavior [12]. Research

on forum activity investigates posting behaviors and interactions
among students, forum structure, the sentiment analysis of post
content, and topic trends. Other studies have examined learner
performance [3], [13], learner demographics [14], [15], [16], and
the correlation of these two factors with learner web log data [17].
Current performance measurements rely mainly on the grades
from quizzes, assignments, and exams. Meanwhile, many other
factors such as due dates [18] may also affect learner performance.
Moreover, demographic information covers diverse areas, such as
geographic location [19], age group, educational background [20],
and objectives for taking a course [21].

With the availability of data on more courses, researchers
can conduct analyses across courses. For example, the sequence
of emergent courses is studied in [22]. Efforts have also been
exerted to determine the social connection and interaction among
students [23] as well as adaptive personal support [24]. Most
of the studies discussed in this section have helped improve e-
learning effectiveness through analyzing various domains, either
from a pedagogy mindset, or from the perspective of data mining
and machine learning. However, few researchers have addressed
e-learning issues from a visual perspective.

2.2 MOOC Visualization
The use of visual aids to explore data has become increasingly
helpful in determining patterns, especially given large datasets. In
this section, we present recent work on MOOC data visualization.

Coffrin et al. [25] used a series of basic charts, such as bar charts
and line charts, to help instructors understand learner behaviors.
In [26], user trajectories are first clustered into groups and then
visualized by composition. Xu et al. [27] proposed a visual analytic
tool that uses scatterplot to analyze user profiles and performances.
Wortman and Rheingans [28] demonstrated a set of visualization
techniques, including graph layouts, parallel coordinates, color
mapping, and interactive selection, for users to explore the data
and find student event sequence patterns. Recently, MoocViz [8]
was established as a data analytics platform which contains a
cross-platform framework, allowing community members to embed
additional modules into the system. VisMOOC [7], an interactive
visual analytics system with a novel seek diagram design is
proposed or analyzing video clickstreams.

In summary, the works mentioned in this section not only use
standard graphs (e.g., scatter plots, bar charts, line charts, and pie
charts) but also innovative visualizations (e.g., node graphs, 3D
diagrams, seek diagrams [7], and parallel coordinates [28]). More-
over, interactive techniques have been explored, including sorting,
filtering, zooming, and clustering. Although such approaches enable
multi-aspect analysis, they are particularly useful for analyzing
aggregate behaviors, thus preventing instructors and education
analysts from drawing additional conclusions. Hence, a detailed
analytics system must be developed for users to comprehensively
understand learning behaviors on MOOC platforms.

2.3 Clickstream Visualization
Web log data include multifaceted user activity information; thus,
various methods have been proposed to visualize different types of
event data, such as news event streams and web clickstreams [29].
Clickstreams are a typical type of web log data that include
navigation paths and interactions with web content. Previous work
concentrated on general video engagement [30] and e-commerce,
such as webpage browsing behavior and clickstream sequences in
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TABLE 1
Overview of the courses information

Course Platform #Events #Weeks #Videos #Watchers Video Avg.
Len.

Video Max.
Len.

Video Min.
Len.

NCH Coursera 1204947 4 17 11061 11:33 20:27 3:37

JAVA Edx 3197422 10 122 18832 5:07 11:26 0:31

Fig. 1. Peak detection example: The orange line indicates the histogram after clickstream data are binned and the histogram is smoothed, whereas
the blue line refers to the detected peaks in this histogram. The detected peaks usually correspond to the regions with large click numbers.

online shopping [31]. For instance, Agnuair et al. [4] visualized a
user-generated clickstream dataset to facilitate intensive understand-
ing of the website visitors and predict user engagement by video
streams. Mimic [5] presented a novel application that analyzes
micro-interactions to assist interaction designers in improving
the usability of web designs. In the MOOC scenario, a few recent
attempts have been made to visualize clickstreams and help analysts
understand how learners watch course videos. VisMOOC [7]
uses a content-based design to show how clickstreams correlate
with video content. In [6], area charts were employed to show
clickstream statistics collected by MOOCs, and interesting patterns
were identified. Inspired by these state-of-the-art studies, we have
developed several novel designs to visually represent clickstream
data and enable users to analyze them extensively.

2.4 Glyph Visualization

Glyphs, are important graphical entities, that have long been used in
the visualization field. A well-designed glyph-based visualization
process strongly benefits end users because this small independent
entity conveys multiple data attributes through visual channels, such
as position, size (length, area, and volume), shape, color, angle,
orientation, curvature, and dynamics (motion speed and direction).
Therefore, glyphs are constantly used to visualize complex, and
multivariate datasets. Research on glyph-based visualization is
vast, and a number of surveys have been conducted [32], [33],
[34], [35]. Researchers have summarized many facets of glyph-
based design, including technical frameworks, classifications of
the visual mapping and layout options of glyphs, discussions on
mapping bias in terms of perception, proximity, and grouping,
as well as evaluations of different glyphs for various analytic
tasks. Despite the many advantages of glyph-based design, it has
limitations that may be grouped into two major problems. One is
the accuracy problem, which is a result of the high dependence of
glyph information on the human visual perceptual system; the other
is the scalability problem, which is derived from the difficulty, or
even impossibility, of displaying hundreds of glyphs on a single
screen. We are inspired by the previous studies mentioned in this
section to carefully design several glyph visualization alternatives
for end users.

3 PROBLEM CHARACTERIZATION

In this section, we first introduce the data extracted from the
databases of two MOOCs and the automatic peak selection method
used. Subsequently, we summarize the analytic tasks identified
from our interviews with two MOOC instructors who offered
MOOCs on the Coursera and edX platforms and an education
analyst with a MOOC research background.

3.1 Data Abstraction and Peak Detection
We extracted learner profile and learner web log data from the
databases of Coursera and edX. The generated learner profile
included the nationality, grade and other information regarding the
learners. Web log data included clickstreams on videos and posts
in forums. Video clickstream data include different types of click
actions such as play, pause, and seek. Table.1 shows the general
statistics for two courses we used later for the case studies.

The raw data of clickstream data were noisy; thus, we cleaned
them prior to embedding them into the system. Then, a peak
detection algorithm was applied. Peak detection algorithms have
been proposed for various analytical tasks, such as biomedical
engineering, computer vision, and signal processing [36], [37],
[38]. Other peak detection methods have also been proposed such
as social media anomaly detection [39]. In the present study, we
adopted the method proposed in [6]; this method was also used to
detect peaks in MOOC clickstream data. It was originally utilized
to detect events on Twitter [40] and was extended by J.Kim et
al. [6]. The detection pipeline follows three major steps. First, the
clickstream data of each video are binned into a histogram, in our
case, by seconds. Then, the histogram is smoothed by a kernel-
based smoother. Finally, weighted moving average and variance are
calculated by a sliding window to detect unusually large numbers of
clicks in the histogram; this number is defined and can be detected
using Eqn.1:

|Ci−mean|
meandev > T h (1)

where Ci is the ith bin of the histogram, and Ci >Ci−1. Mean and
meandev are the weighted mean and variance of all the previous
bins of current bin i, respectively; and T h is the detection threshold.
In our work, the parameters, such as the sliding window length, the
detection threshold, and the weight function for the weighted mean
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and variance were manually selected to best fit the time scale of
our analysis.

An example of the detected peaks is shown in Fig. 1. The orange
line indicates the histogram generated by binning and smoothing
the clickstream data, and the blue line shows the peaks detected
in this histogram. In general, the detected peaks correspond to
the regions with a sudden click increase in the clickstream. More
specifically, as shown in Eqn. (1), the detection criterion is based
on the weighted mean and variance. Therefore, the shape of the
detected peaks is affected by the historical mean and variance. One
possible situation is that less steady clickstreams will make the
variance larger, which leads that the peaks following the fluctuated
clickstreams should be much sharper to be detected. For example,
in Fig. 2, three peaks are detected while the one above (E) is
not considered as a peak because the clickstreams before it are
quite unsteady and fluctuate a lot. The running time for the peak
detection algorithm is O(N) where N is the number of bins in
the histogram. After peaks are detected, they are then manually
checked by the end users and confirmed to be accurate.

We also extracted several valuable learner statistics directly
from clickstream and the forum data; these statistics are as shown
in Table.2. In Section 4, we illustrate these attributes further.

3.2 Task Analysis

The research problem was characterized through our collaborations
with domain experts. Since early 2013, our university has been
offering courses on MOOC platforms, such as Coursera and edX;
over the past two years, several instructors who have taught MOOCs
and e-learning education experts have been provided us with
feedback and advice on problems they wish to study.

We followed the user-centered design process proposed in [41]
throughout the task analysis and prototyping stages. This process
involved three experts, namely, two university professors who offer
their own courses on MOOC platforms and an education analyst
who has studied e-learning related issues and has worked with
MOOC instructors. The three domain experts had also collaborated
with us previously. Moreover, we conducted several field studies
in which we observed three experts as they explored our previous
system, VisMOOC. We then interviewed them, asked for their
feedback on the system, and inquired about the problems they
encountered in online teaching. The experts mentioned analytic
tasks based on popular research topics in their areas of expertise as
well. We were able to obtain data on learner interaction data with
videos on MOOC platforms, which differs from traditional face-to-
face teaching, as well as on the frequent interaction of play, pause,
and seek events that can indicate active participation by learners.
When certain parts of a video generate considerable attention and
interaction from the learners, the resultant data can reflect peaks in
the video timeline. Based on the pilot interviews and given their
previous experience with MOOCs, the end users were interested in
participating our study and volunteered to analyze the peaks in the
clickstream data.

Subsequently, we met regularly with the domain experts to
obtain constant feedback on a series of prototypes of our new
system and to determine further requirements. After additional
rounds of interviews, we gained an improved understanding of the
problems, and summarized major requirements as follows. The
requirements are based on the feedback from the experts, as well
as the knowledge gleaned from the literature review.
T.1 What are the general statistics for peaks?

To obtain valuable information from the detected peaks,
instructors must know the general peak statistics, such as
the number of peaks, peak duration, and peak timestamp. The
peak timestamp indicates where the peak appears in the video
and when the video is released. An overview that summarizes
all the peaks is therefore beneficial as it can provide users with
a clear first impression of the peaks.

T.2 What is the correlation between learner groups and
peaks?
Owing to the open access to MOOC platforms, learners
worldwide can interact with course videos, thereby generating
millions of various clickstream records. However, different
people may have varying goals for taking courses. Even
individuals with the same goal may exhibit different learning
behaviors, and these dissimilar behaviors result in various
clicking patterns. For example, some learners click on most
of the peaks detected, whereas others click only on a very
small number of these peaks. Thus, learners can be grouped
according to their clicking behaviors. Furthermore, end users
can identify the similarities between peaks by exploring the
correlation between learner groups and peaks. Furthermore,
they can and determine whether or not different learner groups
report specific demographics and grading and viewing patterns.

T.3 When and where do the clicks for each peak originate?
Instructors are particularly interested in the spatio-temporal in-
formation derived from learner clickstreams; such information
deepens the understanding of dynamic learning behaviors.
During pilot interviews, we used an animation to show
clickstreams over time on a world map. Interesting patterns
were revealed in the process. However, animation itself is not
a suitable approach to handle analytic tasks. The current study
agrees with previous studies, such as [42]; given the significant
cognitive load of animations, an animated dataset may induce
several simultaneous changes that complicate comparisons
and render them inefficient. Therefore, the domain experts
require an appropriate method to reduce cognitive load and
help analyze spatio-temporal behaviors.

T.4 Do abnormal peaks exist and who causes these peaks?
In some cases, a peak is induced by a very small number of
learners without any reasonable intention or even by a system
error. Such actions may result in abnormal peaks, which do
not represent the general regions of interest (ROIs) of learners;
therefore, we should consider these peaks to be “outliers”
in a visual analysis. However, certain abnormal peaks can
still be investigated if those particular learners are expending
actual time and effort on such peaks to understand certain
concepts and gain knowledge. Automatic methods cannot
identify abnormal peaks; thus, an intuitive design that can
visually highlight such peaks and the learners who cause them
is valuable for detailed analysis.

3.3 Design Requirements
The design process adpoted for this work draws from the nested
model in [41]. The system is human-centered given that we
conducted interviews with end users at different design and imple-
mentation stages; consequently, we made adjustments according to
their requirements. Furthermore, we identified the following key
design rationales for designing PeakVizor.
R.1 Multi-scale and dual-facet exploration

An overview can provide instructors a clear first impression
of all the peaks. Instructors are likely to determine interesting
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Fig. 2. PeakVizor system. (A) Basic information of the selected course from the course list. (B) The overview lays out all the peaks as glyphs according
to the learning behaviors. (C) During the analysis of a selected peak in a video, the clickstreams flow from various countries to the corresponding
spots on the video timeline. (D) A click event chart shows the changes in the click actions along the timeline. (E) Each glyph on the bottom represents
a peak in the video. (F) The correlation view aims to analyze the correlation between different learner groups and peaks.

patterns and particular information efficiently through visual
representations. As a result, instructors can conduct detailed
analysis of their ROIs. Given the multivariate nature of
clickstream data, different views should be presented to enable
end users to analyze the peaks from different perspectives.
Coordinated analysis is also important to domain experts;
such a process facilitates simultaneous iterative exploration
via different perspectives.

R.2 Intuitive visual design
Intuitive representation is an essential element of numerous
visualization systems, especially when end users are not yet
adept in visualization. Familiar visual metaphors can reduce
the cognitive burden and enhance understanding. In the devel-
oped system, the design in the flow view features metaphors
that are drawn from daily living and are thus easy to accept
and understand. This feature was validated by the instructors
and education analysts interviewed. Thus, intuitive visual
designs support visual analytics by considerably exploiting
user intuition and experience.

R.3 Consistent encoding
The consistent use of visual encoding techniques across differ-
ent data dimensions and scales can reduce visual complexity by
preserving the mental map of a user to enhance understanding
and simplify the exploration process. According to object
constancy and change blindness theories, abrupt visual design
changes should be avoided [41]. Therefore, a consistent color
scheme and design should be applied to facilitate the intuitive
understanding of learner information and behaviors.

R.4 Visual clutter reduction
Although analyzing large and complex amounts of data is the
key to performing important analytic tasks, visual clutter
problems are aggravated by increases in the amount and
complexity of data. The count of clickstream events and the
number of learners can be massive; for example, the JAVA

course (Table 1) logs more than 3 million click events and
approximately 19,000 learners. Thus, we must consider the
scalability issue when designing visualization systems.

4 VISUALIZATION DESIGN

In this section, we first provide an overview of the PeakVizor
system. Then, we illustrate the visual encoding process of each
view in detail and discuss alternative designs. Finally, we discuss
the interactive exploration of PeakVizor.

4.1 System Overview

Fig. 2 presents an overview of the PeakVizor system. The main
interface consists of three views: the overview includes a peak
graph with a glyph as a node and provides course instructors and
education analysts with a general idea of the peak attributes and
similarities across different peaks. In the flow view, end users can
explore the spatio-temporal information of each peak. To facilitate
a detailed analysis of the correlation between learner groups and
peaks, the correlation view highlights whether or not learners
form particular groups according to their clickstream behaviors
and how learners differ in terms of country, grade, and viewing
attributes; these attributes include click activeness, loyalty, delay,
review, dropout time, and forum activeness. In addition, PeakVizor
supports multiple interactions, such as filtering and selecting in
different views. Upon selecting a course from the pop-up window,
a column appears on the left side of the screen that shows video
screenshots corresponding to each peak and its basic information.
In each view, users can use the snapshot function on the top right
corner of the screen to record their analysis at any time. Combining
all the views enables users to comprehensively analyze learning
behaviors in peaks at different levels of granularity.
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Fig. 3. Click event chart and major peak features. A click event chart
shows how the number of click events change along the video timeline.
The starting point, area, and width are encoded in the glyph as well.

4.2 Visual Encoding
To solve the analytic tasks summarized from the previous interviews
with domain experts, we propose several novel designs and different
views in accordance with the design rationales in Section 3.3.

4.2.1 Glyph Design
According to design requirement R.1, end users should be provided
with an overview of all the peaks. Furthermore, the visual design
should reveal the important features of each individual peak; to
this end, a glyph design is proposed. This glyph aims to help end
users identify different peaks and their singularities. Following
our discussions with course instructors and education analysts, we
identify the key information that must be encoded into the glyph.

The major features of a peak are shown in Fig. 3; the blue line
shows the number of clicks along the video timeline. Specifically,
the three key features of a peak are depicted, and the width of a
peak is defined as the peak duration. According to [6], different
peak widths may refer to different viewing behaviors. The area
under a peak indicates the total number of click events observed
during the peak duration, whereas the starting point indicates the
onset of the peak. In other words, this point indicates when the
peak appears in the video. The instructors also point out two other
valuable peak features: grading distribution and the statistic that
detects potentially abnormal peaks caused by a small number of
learners. We then design our glyph to encode these features.

Visual encoding parameters, including size, inner line position,
and color, should be combined to convey the key attributes of
peaks. We use a rectangle to represent each glyph: the height and
the width encode the total number of clickstreams for the chosen
click type and peak duration, respectively. The two timelines that
surround the glyph are designed to help end users identify the
peaks quickly. The dots on the horizontal and vertical lines indicate
the onset of the peak in the corresponding video and when the
video is released, respectively. For example, the dots on the two
surrounding timelines in the design sketch presented in Fig. 4(a)
indicate that the peak appears near the beginning of the video and
that the video is released at the beginning of the course.

As discussed in Section 3.2, one of the end users’ main aims
is to discover any abnormal peaks (T.4). We then encode peak
anomaly as follows: first, we identify the learners whose clicks
exceed the threshold, th. Then, we calculate the contribution of
these particular learners to the total number of click actions in

the peak. Finally, we exhibit the percentage as the position of the
inner line in a glyph. To choose a proper threshold, we test various
values and determine whether or not we can identify the predefined
potentially abnormal peaks. We then set the value of th to 10 for our
case studies. For example, the inner line in 4(a) shows that learners
whose clicks exceed the threshold contribute to approximately half
of the total number of clicks in the corresponding peak. Thus, the
potentially abnormal peaks can be detected based on the position
of the inner line, and education analysts can analyze the reasons
behind the generation of these peaks further through other views.

To maximize the glyph space, we use stripped bars to encode
the grade distribution (Fig. 4(a)). Green color indicates a high score,
whereas red represents as a failing score. We categorize the grades
into six different segments for the case study. Nevertheless, end
users can freely adjust the number of segments and the grading
criteria. Fig. 4(a) depicts the sample distribution of learner grades.
Approximately half of the learners received grades higher than 75,
and very few learners reported grades lower than 30.

From the perspective of a human perception, we take into
account certain design considerations during the establishment of
glyph prototypes. One is glyph size. In setting glyph length, we
should decide whether to use the total count of the clicks for a
period of the same length or to normalize the count by assigning
the same width to the peak given that the number of clicks is highly
related to peak duration. However, the use of a constant width
for each glyph may suggest that high glyphs correspond to high
click density. This scenario can mislead end users. Another concern
involves the application of either a uniform length or a scaled
length to the timelines when the height and width of the peaks
change. The trade-offs between aesthetics and precision should be
determined for the given tasks. Therefore, we conduct interviews
with experts regarding glyph design and have finally chosen to
utilize the scaled length according to interviewee feedback.

Several design alternatives have also been implemented and
evaluated during the prototyping stage.
• Initially, we overlay a treemap (Fig. 4(b)) inside the rectangle

to encode grade distribution. Treemaps have been well estab-
lished as a visual representation method; thus, we believed
that this approach would be received well by the end users.
Although they regarded the treemap as aesthetically pleasing,
it complicated the comparison of the percentages of learners
marked with the same color at different peaks because the
layout varies. The situation depicted in Fig. 4(b) complicates
the analysis of some tasks, such as determining the percentage
of learners who have received grades higher than 75. This
representation may also lead to misunderstandings because
the grading data do not convey hierarchical information.

• Inspired by DICON [43], we use the shape visual channel
to encode the singularity of each peak(Fig. 4(c)). First, we
calculate the average and standard deviation of the number of
times a learner clicks on each peak and draw the distribution
for each peak. However, the use of the shape visual channel,
in which the “peakness” cue indicates the uniqueness of a
certain peak, is too complicated for end users to understand.

• Another option is the clock glyph shown in Fig. 4(d). The
concept originates from the pie chart which is a typical visual
representation for distribution. We examine the inner and outer
circles to indicate the singularity of each peak and to show
the week in which the video was released. The pointer of the
clock indicates the point at which the peak appears in the
video. Although end users can easily understand the encoding
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(a) (b) (c) (d)

Fig. 4. Glyph design helps end users identify specific peaks and their
singularities. (a) Glyph design used in PeakVizor. (b) Treemap-based
glyph design. (c) Glyph design that uses shapes to represent the anomaly
in peaks. (d) Clock glyph design.

process and agree that the design is aesthetically pleasing, the
circular representation is mostly used for periodic time, such
as a 24-hour time cycle, and may thus induce confusion.

4.2.2 Overview Layout
To provide users with the general peak statistics and the relation
among them (T.1), we use the overview layout to present all the
peaks in a course so that users can have an initial global glimpse of
all the peaks before selecting certain peaks for detailed exploration
(R.1). A similarity-based layout is applied in the overview (Fig. 5).
We calculate the similarities among different peaks and utilize
Multidimensional Scaling (MDS) [44] to compute glyph layout on
this basis. MDS is commonly used to cluster the similarities of
individual cases in a dataset. The time complexity for MDS is O(N3)
where N is the number of peaks. To eliminate the overlapping
among nodes, we employed a well-established method [45].

To measure the similarity between two peaks, we adopted a
simple and intuitive approach that involves calculating the number
of shared learners. However, this measurement is affected by the
total number of clicks of each peak, thereby generating misleading
results. To avoid this problem, we computed a feature vector for
each peak based on the histogram of users general statistics (e.g.,
demographic information and performance) and then applied the
histogram intersection kernel (HIK) [46] to calculate the distance
between two peaks. HIK is a histogram-based kernel for measuring
feature similarities; it is denoted by kHI and is defined as follows:

kHI
(
pi,pj

)
=

d

∑
k=1

min
(

pik, p jk
)

(2)

where pi = [Di,Gi] is the feature vector of ith peak. Di,Gi are the
demographic and grade histograms of the learners, respectively,
and pik is the kth bin of the feature vector. kHI increases if learner
statistics are closely distributed between two peaks. The time
complexity of HIK similarity is O(N2 ∗m) where N is the number
of peaks and m is the length of the feature vector. The total running
time of the MDS layout, and the HIK similarity calculation is less
than 0.1s, which is efficient enough for real-time interaction.

4.2.3 Flow View
This view shows the spatio-temporal distribution of the peaks
detected. The choropleth map on top indicates the distribution of
click actions by country. The size of the outer circle on the map
reflects the number of clicks in each country, whereas the size
of the inner circle represents the number of learners by nation.
Learners are geocoded through their IP addresses, and we ensure
that the flows terminate in capital cities at the country level. The
name of a country is shown when the pointer is hovered over its
corresponding location on the map. If users click on the country,

Fig. 5. Overview. The graph is used to show the similarity among peaks.
Each node represented by a glyph corresponds to a peak. The layout
of the graph is calculated by multidimensional scaling based on peak
similarity. A short distance indicates high similarity between two peaks.

then the city-level choropleth map is exhibited, with small circles
that correspond to the location of each city. At the city level, the
flows represent the click actions from different cities in the country
specified by an end user. The clickstreams from different countries
flow to various timespots on the timeline below. Users may choose
from two types of timelines in the system according to dissimilar
exploration purposes. The first choice is video level; when a user
selects a glyph in the overview and directs it to the flow view, a
click event chart with the corresponding peak is shown below the
video timeline (Fig. 2). The flow map above indicates the origin
of the click actions of the peak in this video. The click event
chart (Fig. 3) shows the changes in the number of click events
along the video timeline to identify when the peak appears in the
video. This chart also reveals the shape of the selected peak in
the video to facilitate the detection of potential false peaks. An
example is illustrated in Section 5. The second choice is course
level. The timeline is correlated with the course period from the
day the course opens to the day it is completed. Each bar below the
timeline represents the sum of the clickstreams on each date. When
a peak is selected, the clickstreams flow from different countries to
various dates on the timeline.

To ensure that the view is simple and clear, we design the flow
path as follows: first, we split this path into two parts. We then draw
a Bezier curve for each part to ensure that both components are
smooth, as shown in Fig. 2. Subsequently, we carefully position the
intersection point of the two parts. This point (xcp,ycp) is defined
as:

xcp = 0.5xsp +0.5xep
ycp = d +αxsp

(3)

where (xsp,ysp) and (xep,yep) are the starting and end points of
each path, respectively. d is the vertical distance between the
starting point and the lower edge of the choropleth map, and α is a
parameter that is dynamically adjusted according to the size of the
entire view. Thus, paths from the same country are bundled within
the choropleth map to enable end users to view the choropleth
map without much interference. The ycp of each country differs as
long as longitudes vary; therefore, most path bundles can easily
be discriminated. If two countries have similar longitudes, users
can check the paths of either country by highlighting their names.
We have also designed two modes to avoid the influence of the
total number of learners from different countries when comparing
the click flows from various nations. One mode shows the number
of clicks as in our original design, whereas the other mode shows
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TABLE 2
Definition of each learner attribute

Attribute Meaning

loyalty The ratio between the number of clicked peaks and the total
number of peaks.

dropout time The index of the last video which has been watched.

delay The average time interval between the earliest watching date
and the releasing date of each peak.

click activeness The average click number of each peak.

review activeness The average review times of each peak.

forum activeness The total number of posts in the course forum.

the number of clicks normalized by the corresponding number of
learners. In this way, users can examine two different statistics for
their analytic tasks.

Unlike the static flowmap design, we initially produced an
animation to present the same information on different dates.
Instructors have displayed much interest in the use of animation
and were quite impressed by the aesthetically pleasing presentation.
Upon exploring further, however, the instructors found it difficult
to observe patterns in the animation. Furthermore, watching the
entire animation is time consuming. The instructors were required
to maintain a high level of attention throughout the duration of
the animation viewing. A generally desirable criterion for effective
visualization is the capability to preserve a mental map, that is,
maintaining the visual attention of the end users significantly while
occupying little memory space. In this aspect, static views outweigh
animation at this point; thus, we abandoned the animation design.
The flow view offers an intuitive means through which the spatio-
temporal information of the selected peak can be shown. We also
provide a series of snapshot windows captured in flow view for
side-by-side comparison, and interesting patterns can be spotted;
this finding is explained in additional detail in Section 5.

4.2.4 Correlation View
End users can obtain general information and the spatio-temporal
distribution of each peak from the overview and the flow view,
respectively. However, end users still cannot deduce whether or
not learners form particular groups according to their clickstream
behaviors in the peaks detected. Thus, the correlation view is
designed to such users to further analyze the correlation between
different learner groups and the peaks.

Upon entering correlation view, end users are shown a choro-
pleth map on a set of parallel axes to display the distribution of
different attributes. The parallel axes can be classified into two
categories; the first several axes represent the different attributes
of learners, including country, grades, loyalty, delay, dropout time,
video activeness, review activeness, and forum activeness. Table. 2
shows the definitions of the attributes extracted from web log data.
In this study, loyalty refers to the adherence of a learner to different
peaks. For instance, if a learner clicks on most of the peaks (9
times out of 10), he or she is a high-loyalty learner (with 90 percent
loyalty). Other attributes, such as delay and dropout time, can
also help analyze the synchronicity in watching course videos and
the persistence of a certain learner group. The second category
includes all the peak axes; the coordinate on each axis depicts
the number of times a learner has clicked on this peak. End users
can filter different axes to explore the attributes they are interested
in. The peak axes are rearranged after filtering, and the order is
based on the number of learners who satisfy the filtering options

in each peak. End users can also move different learner attribute
axes and rearrange them according to their interests and domain
knowledge. During the interviews, one instructor mentioned that
he wishes to select particular users and to check their attributes
and watching behaviors at an individual level. Accordingly, we
have added a “draw lines” option to overlay parallel coordinates
over the choropleth map when end users are interested in exploring
individual level behaviors. Each line represents a learner in the
parallel coordinates. This function is quite useful because the
lines indicate clearer patterns when the number of learners is
reduced after multiple instances of filtering. However, the parallel
coordinates suffer from a visual clutter problem when too many
learners are selected; thus, we merely show the choropleth map to
end users by default.

We have also considered several alternatives, such as storyline
design in which each actor represents a learner and each scene
indicates a peak. However, the scalability problem is the foremost
issue with this approach given that a single course often caters to
more than 10,000 learners. By contrast, state-of-the-art storyline
visualization [47] is designed only for dozens or hundreds of actors.
Another possible design is the co-occurrence matrix, which is
similar to parallel coordinates as each row of the matrix represents
a learner and each column represents a peak. The color saturation
indicates the corresponding click number. However, the additional
visual channel and the color saturation may lead to perceptual
ambiguity. More specifically, determining whether a dense cluster
is caused by many learners clicking on the same peak or a single
user clicking on a peak many times is difficult for users.

4.3 Interactive Exploration

The interaction among the three views is carefully designed to
support the exploration of the clickstream data from different
aspects and at various levels of detail.

Details-on-demand. Selecting, filtering and highlighting are
the three major operations in PeakVizor. When a peak is selected in
the overview, a pop-up window displays the detailed information of
this peak and the corresponding video screenshot. Thus, users can
quickly identify the content of the selected peak. Upon selecting
a peak, users can proceed to the flow view, which has a video
timeline. Then, the corresponding video is shown in the flow view,
and users can conduct further analysis smoothly. These users can
also choose to compare cities from different countries by clicking
on various nations in the choropleth map. By filtering various
axes in the correlation view, users can explore the behaviors of
different learner groups. When such users click on a certain axis, the
corresponding glyph and the peak screenshot are highlighted to help
users remember the peak they are interested in. The highlighting
function in the flow view facilitates convenient viewing of the
corresponding glyph and the screenshot of each peak. When
users click on an axis in the correlation view (or on a glyph
in the overview), the corresponding glyph (or axis) is highlighted
along with the corresponding screenshot in the peak list. Thus, a
coordinated analysis can be performed efficiently and effectively.

Comparative analysis. To facilitate a side-by-side comparison,
a snapshot function is provided in the top right corner of the
screen. Moreover, a clipboard is shown below each view to record
the current view. While exploring the system and discovering
interesting patterns, end users can click the snapshot button to
capture images that are then stored in the clipboard. Any captured
snapshots are magnified by hovering over a clipboard box, thus
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enabling users to browse their previous findings easily. After several
rounds of exploration and switching among views, end users can
open the clipboard that contains all their snapshots for further
comparison and analysis.

5 CASE STUDIES

To evaluate the effectiveness and usefulness of PeakVizor, we
conducted case studies with MOOC instructors and education
analysts. We first performed data preprocessing which included
data extraction and peak detection as mentioned in Section 3. In
the data preprocessing part, the most time consuming part was to
extract the data we need for calculating the clickstreams. The time
was dependent on the size of the clickstream data. For example, it
took 10 minutes for the NCH course with 1.2 million clickstreams;
while for the JAVA course with 6 million clickstreams, it took about
an hour. The peak detection algorithm worked efficiently. For a
10-minute video with a histogram of 600 bins, the running time
was 60ms on average. Therefore, for a typical MOOC course, the
whole running time can be done in a few seconds, which costs
little extra time out of the whole data preprocessing part. Then,
we deployed the back-end part of the system into our server with
a 2.7GHz Intel Core i7 CPU, 8GB memory PC. The data were
stored in a local database (in our case, MongoDB) and loaded by
the web server. Since PeakVizor is a web-based application, users
can access the system through the web browser. During analysis,
several patterns were identified, and the underlying insights were
explained by the participating end users. We classified the major
findings into four categories, which correspond to tasks T.1 to T.4
in Section 3.2.

5.1 General Statistics for Peaks

The general statistics of the peaks are mainly presented in the
overview. For example, the JAVA course has four major clusters of
peaks, as shown in Fig. 5. The peaks in each cluster clearly share
similar grading distributions. The majority of the learners in the
two clusters on the left side of the interface received low grades,
whereas most of the learners in the bottom-right cluster reported
high grades. By checking the inner line on the left of the glyphs,
the instructor determined that the peaks at which most learners
received higher grades were those peaks in the latter videos. This
finding is reasonable given that those who followed the course and
watched videos until the last are likely to receive high grades.

A few outliers are located at a slight distance from the center
of the cluster, such as the two glyphs marked with red rectangles.
A close examination of the two glyphs reveals that the inner lines
of both peaks located around the middle are significantly higher
than those of the others; this result indicates that a small number
of learners contributed to approximately 50 percent of the total
number of clickstreams in the peak. The instructors commented
that such peaks are unusual and should be explored further.

5.2 Correlation between Learner Groups and Peaks

The correlation between learners and peaks can be analyzed in
the correlation view, which enables users to explore how learners
correlated with one another according to their behaviors in peaks
and other learner attributes, as shown in Table 2. In the following,
the findings related to the four different attributes are discussed.

Dropout time. Since courses on MOOC platforms usually
report high attrition rate; thus, a large number of learners occasion-
ally drop out throughout the course duration. For both the JAVA
and NCH courses, the number of learners logging click actions
dropped considerably after the first week. By contrast, learners who
finished the first two weeks’ videos are likely to finish the course.
In other words, the dropout rate is the highest in the first week and
stabilizes after the first two weeks. The report from [20] showed
similar results: “registrants who are active after the first week have
a fairly low chance of leaving in subsequent weeks.” When the
instructor of the JAVA course explored the dropout time axis in the
correlation view, he noted that certain learners who dropped out of
the course early but still performed well in the assignments and in
the final exam, as shown in Fig. 6(a). To examine this phenomenon
further, the instructor used the “draw line” function and reported
that most of the learners who exhibited such learning patterns
were from India. The question was raised of how Indian learners
can perform well even without viewing the online course videos
and interacting with the course content; the education analyst we
consulted called this finding the “Indian Phenomenon”; this analyst
believes that although distance education has been quite common
in India and MOOC platforms have become popular recently,
still a large number of learners from India tend to download
the course videos instead of watching them online because of
network bandwidth limitations. Therefore, no clickstream data were
recorded for such offline video viewing behaviors. This pattern
is normally observed in the Chinese learner group as well. For
the JAVA course, the instructor uploaded the course videos via
the YouTube platform; thus, many Chinese learners cannot access
them. The use of the YouTube platform may explain the previous
pattern for Indian learners as well as the small number of Chinese
registrants in this course.

Grades and country. The instructor for the JAVA course first
selected the learners with high grades and then filtered the results
by selecting US learners and Indian learners on the country axis.
The peak axes were dynamically ordered; therefore, the instructor
could immediately identify the peaks that have high relevance to
the selected group of learners. Subsequently, the instructor clicked
on the snapshot button to record the filtered results, compared the
snapshots and noted that these two groups of learners differed from
each other in terms of interests. Specifically, among the top 10
peaks clicked by the high-performing US learners, only two ranked
in the top 10 for the Indian learners. To ascertain the reasons behind
this difference, the instructor checked the corresponding content of
these high-ranked peaks. Upon careful observation, the instructor
assumed the following: US learners tend to pause videos at the
peaks when the instructor demonstrates a program or explains
source codes, whereas Indian learners typically pause at points
where the instructor illustrates concepts, such as certain terms. The
instructor suggested that we investigate whether or not this finding
holds true across courses when data for more courses are available.

Loyalty. One of our education analysts was interested in the
correlation between loyalty and learning behaviors. The analyst
explored this topic over a long period of time in the correlation
view and determined that, learners with high grades generally tend
to be highly loyal, that is, they click on the peaks more often and
interact with the key content in the videos actively. Conversely,
learners with low loyalty do not exhibit clear performance patterns.
The expert indicated that while successful learners share common
characteristics, those who fail usually have multiple reasons for
doing so. Thus, the behaviors of the latter are difficult to define.
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(a) (b) (c)

(d)

Fig. 6. Patterns detected in the correlation view. (a) The “Indian Phe-
nomenon”: learners drop out of the course early but still receive high
grades. (b) Learners with high loyalty tend to receive high grades. (c)
Learners who are active in the course forum tend to have low watching
delay. (d) A small group of learners who focus on peaks #9, #10, #14.

Forum activeness. We explored the relationship between video
watching behaviors and forum activities as well. As shown in
Fig. 6(c), we filtered the forum activeness axis and determined that
learners who were active in the forum (i.e., with numerous posts)
generally watched the course videos with low delay. This finding
indicated that learners who keep pace with the course schedule
are proactive; furthermore, they are likely to discuss problems and
share experiences with their fellow learners. Whenever a video
is released, they always constitute the first group of learners who
watched and interacted actively with one another in the forum.

Another education analyst was interested in whether or not
learners could form different groups based on similarities in
clicking behaviors; this analyst merely obtained the peak axes. By
filtering the different axes through dynamic ordering, this analyst
identified a small group of learners whose focus on peaks was
distinct from that of the other learners. As per Fig. 6(d), a group
of learners focused specifically on three peaks but rarely clicked
on the other peaks. The education analysts also noticed that most
learners in this group performed poorly; however, these analysts
have not yet developed a plausible explanation for the unusual
focus of these learners. Therefore, the education analysts suggested
that we further analyze this issue by exploring more attributes in
these users, such as their behaviors in the course forum.

5.3 Spatio-temporal Information of Peaks
The flow view is of significant interest to the instructors because

this view can uncover spatial and temporal information regarding
the peaks for a detailed analysis of learning behaviors. Upon
investigating the flow view of the NCH course, one instructor

immediately detected two major hot spots (marked with purple
rectangles in Fig. 7) in the clickstream for most of the peaks. By
referring to the course syllabus, we learned that the first hot spot
corresponds to the first week after the video is released and the
second hot spot to the review week before the exam. By exploring
this view further, the instructors also determined that the review
habits of US learners and Chinese learners vary. Specifically, US
learners review throughout the week, whereas Chinese learners
review only on the final two days of the week. Thus, the cramming
period of Chinese learners is shorter than that of US learners.
With respect to the difference in the total number of learners from
different countries, the normalized mode was initiated to ensure
that this result was not generated by comparing a small number
of learners with a large number of them. The result is unchanged
because the total number of learners from the US and from China
was similar in this course. Furthermore, a few peaks were preferred
over the review hot spot. The instructors suggested that these peaks
can reflect the interest of learners because they are irrelevant to
the exam. Thus, instructors can accurately understand the genuine
interest of learners by examining the content of these peaks.

Another insight presented by an instructor is that the number
of clicks decreases significantly over time because MOOCs usually
report high dropout rates. Upon comparing the flow maps of
different peaks, the instructor noted that the number of clicks
decreases gradually for European countries such as the UK and
Spain. As shown in Fig. 7(b), the flow view of peak #1 from the
first video of NCH suggests that learners from the US and China
(marked with purple circles) contribute most of the clicks in this
peak. By contrast, the sizes of the circles from most regions shrink
significantly for peak #28 (Fig. 7(c)), which appears in the video
during the third week. Nonetheless, the sizes of the circles from
West European countries remain almost the same. This pattern may
indicate that the learners from the latter region exhibit persistent
viewing behavior.

5.4 Anomaly among Peaks

The anomaly among peaks was discovered by an instructor
who performed an in-depth analysis supported by our system. As
mentioned in Section 5.1, two unusual peaks were detected by
observing the overview. Subsequently, the instructor clicked on a
glyph to obtain detailed information regarding the peak. A pop-up
window appeared with a screenshot of the corresponding video
content along with a click event chart of the selected peak and
detailed information regarding the peak. This information includes
the video title, video length, peak duration, and action number of
the peak. Upon examining the corresponding video content, the
instructor did not find confusing or interesting material at this peak;
thus, the issue remained unsolved until he realized that this peak
may be a false peak caused by a system error or disruptive learners.
To check the feasibility or validity of this assumption, he explored
this peak further in a detailed view by clicking the “go flow view”
button. Fig. 2 depicts the scenario encountered when he entered
the flow view. The click event chart of the corresponding video
is shown below the flow map, and the peaks were marked with
glyphs. The clickstreams flowed from all over the world to the
three peaks in the video; unlike the other two peaks, the shape of
the third peak was much “sharper” and was exactly the type of
abnormal peak being investigated by the instructor. We checked
the original data and learned that the peak was caused by hundreds
of clicks from a single user within a two-second period. Therefore,
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(a)

(b) (c)

Fig. 7. Two patterns in flow view: two hot spots (marked with purple
rectangles) along the timeline and a difference in the persistence between
learners from different countries (marked with purple circles). (a) The first
hot spot appears a week after the video is released, and the second hot
spot appears before the final exam. The second hot spot usually lasts
longer for US learners than for Chinese learners. (b) Flow view of a peak
in the first video. (c) Flow view of a peak in the video during the third
week (four weeks in total).

this peak is considered to be a false peak and is probably caused
by a system error because a single user cannot possibly click at
such a high frequency in two seconds.

6 EXPERT INTERVIEWS

To evaluate our system further, we conducted in-depth in-
terviews with five domain experts and seven teaching assistants.
Among them, two MOOC instructors (MIs) and an education
analyst (EA1) had collaborated closely with us from the problem
characterization phase. The other two experts, namely, one MOOC
instructor and one education analyst, did not have prior experience
in using our system before the interviews. We also invited another
seven teaching assistants who had experience working with MOOC
instructors. We denote all the participants here as MI1, MI2, MI3,
EA1, EA2, TA1, TA2, TA3, TA4, TA5, TA6, and TA7; they are
aged between 23 and 63 years and are not color blind. Among
them, three are female and the remaining nine are male.

Procedure. Prior to the interviews, we collected background
information from the participants, including their research experi-
ence, teaching experience, and background knowledge on MOOC,
visualization, and MOOC-related data analytics. All of them had
at least one year of experience with both MOOCs and university
teaching. Seven out of 12 had at least one year of experience in
visualization, whereas the other five had no background knowledge
on this subject. Half of the participants had previously observed
MOOC-related data analyses, but only two regarded the analysis as
significantly useful to them. We then briefly introduced the goals
and features of PeakVizor and showed a detailed tutorial video of

the system. Afterward, the participants were asked to explore the
system and to familiarize themselves with its features and functions
via several small tasks we proposed for them to perform.

The following small tasks were designed to help answer the
questions in the task analysis part described in Section 3.2:
• Acquire a general overview of the statistics for peaks in the

required course and identify typical patterns (T.1).
• Find a specific peak (a potentially abnormal peak) and retrieve

the corresponding detailed information about this peak (T.4).
• Observe the flow view and the correlation view to identify

different learner groups with peaks (T.2).
• Explore the video-level flow view and determine when and

where the clicks of a selected peak originate (T.3).
All the small tasks were based on the JAVA course dataset while
the tutorial was mostly based on the NCH course. The participants
were also required to answer some questions after finishing each
task. Finally, we invited them to select a course (either JAVA or
NCH) and explore the system using the functions they had just
learned. Then, they were required to answer some open questions
regarding the patterns they observed from each view; to provide
their opinions on system usability, visual designs and interaction,
and specific functions; to inform us of difficulties they encountered
when exploring the system; and to provide suggestion for further
improvement. Each interview study lasted approximately 1.5 hours.

Summary of interviews on system usability. All the partic-
ipants were satisfied with the system and deemed that the views
and features of the system could fulfill most of their requirements.
EA2 commented, “Compared with the current analytic systems,
PeakVizor offers various levels of data analysis, which is powerful
and will allow us to dig deeper and gain more insights into online
learning behaviors.” EA2 had examined previous works on learning
behavior analysis in MOOCs and was surprised that a system could
facilitate learner group behavior analysis from clickstream data.
When exploring the system, MI1 and MI2 focused on analyzing
their respective courses and obtained interesting information, which
were described in detail in the previous section. Prior to the
interview, MI3 had already heard about our system from one
of the MOOC instructors who collaborated with us. MI3 himself
also offered an MOOC, and after trying the system, he was keen
on having us analyze his course as well. He even suggested that
PeakVizor can be applied not only to MOOCs but also to other e-
learning platforms, such as the online system used in his university.
EA2 also put forward a similar idea of implementing the system
to analyze clickstream behavior for different video types. The TAs
agreed that the system was useful. For instance, TA1 commented,

“I think the layout is intuitive. The overview clusters the students with
different grade well. It’s useful for teachers to analyze the students
learning habit and improve their teaching quality.” However, some
TAs complained about the loading time of the correlation view.
TA5 stated that “The interactions are quite good but due to the
volume of data or performance of the computer, the fluency of
system is not good.” At the same time, TA4 suggested that “The
tutorial is useful, however, for those who are not so familiar with
visualization or MOOCs, it might takes more time to learn how to
use the system.”

Summary of interviews on visual designs and interactions.
The visual designs were well received by all the participants, and
they appreciated the various interactive functions. The color and
size encodings of the glyph were promptly accepted; however,
understanding the inner line consumed some time when it was
explained in the tutorial. TA2 commented, “Since the glyph encodes
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too much information, it would be better to add some visual
encodings in the diagrams to help assist understanding.” EA1
and MI1 agreed that the glyph design not only presents the basic
information and singularity of a peak well but also serves as an
icon for the glyph so that it is easy to locate at different views for
different analytic tasks. MI2 also commented, “The overview gives
me a clear idea about the general peak distribution and the outliers
are easy to detect from both the glyph itself and the layout of the
glyph.” EA2 appreciated the flow view and considered it “visually
appealing”; this analyst regarded it as a “vivid representation”
given that learners and clickstreams flow from different countries
to the corresponding date on the timeline. TA3 commented, “The
correlation view contains a lot of information, I can spend a
whole day exploring it.” With regard to the correlation view, all
the participants felt that the default choropleth map is easy to
understand; however, after they clicked on the “draw lines” button,
some of the participants found the parallel coordinates quite difficult
to understand. After we explained this concept carefully, they
accepted it and considered the coordinates to be clearer than the
choropleth map when the number of learners is sufficiently small
after several steps of filtering. With regard to interactions, M2 was
intrigued by the pop-up window showing the corresponding video
content and clickstream curve and said “When I was considering
going back to check what content the peak corresponds to, I
suddenly found this pop-up window, and it showed the exact
information I wanted to know!” The filtering and highlighting
functions were frequently used when the participants investigated
the correlation view. We observed their exploration carefully and
noted some differences in their attention. The two major attributes
the three MOOC instructors focused on are the country and grade
information, which we derived from the databases directly. They
also paid much attention to dropout time because they wished to
analyze when and why learners give up during the course period.
However, they did not explore the delay axis much, whereas the
two education analysts filtered this axis few times. When we asked
for their reasons, they said they would like to compare the MOOC
offerings with traditional courses, in which learners are constrained
in terms of when and where to study. Only one user was especially
interested in the loyalty axis, and she thought it was an innovative
way to encourage loyalty.

Summary of interviews on difficulties and suggestions. In
addition to the comments about the usability of the system and
the visual designs, the domain experts also provided valuable
suggestions on various aspects. TA4 mentioned the scalability
problem caused by the considerable number of glyphs. However,
when we showed the glyphs on a large screen, the scalability
problem was negligible. For projection on a small screen, TA4
suggested, “You could add a magnifying lens to help observe the
glyph clearly.” Most of them appreciated the snapshot and clipboard
functions. TA6 and TA7 commented that these features helped
them revisit the detected patterns and were useful in comparing
the flow views for two peaks from different videos. However, EA2
mentioned, “I recorded too many snapshots and got confused later.
It would be better to support the automatic generation of a pdf file
after the whole exploration.” EA1 suggested combining the analysis
with forum data to further explore the learner group behaviors,
which we plan to focus on in our future work. MI1 also mentioned
that knowing the analysis results several days after the video is
released is useful so that he could prepare some supplementary
materials and upload them the next week or place these materials
in the forum to help learners understand the course and catch up

with the lessons. EA1 suggested that we relate our analysis with the
learner surveys on the onset of the course and the final evaluation
at the end of the course to uncover more interesting information
about the correlation between the motivation of learners and their
behaviors and performance in the course.

7 DISCUSSIONS

PeakVizor is designed to help explore and understand the learning
behaviors underlying the clickstream peaks in MOOC videos. Three
coordinated views, namely, overview, flow view, and correlation
view, are used to analyze underlying learning patterns from different
perspectives. Case studies are conducted to illustrate the new
insights into learning behaviors. The system is well received and
highly rated by the end users.

However, the system still has several limitations. Although the
choropleth map is integrated into the parallel coordinates to reduce
visual clutter, the system still suffers from a scalability problem
when the number of users is considerably large. The number of
selected peaks should only be up to 30 to 40 to enable users to
observe the different attributes clearly. Fortunately, according to
the feedback of the participating end users, the scalability of the
correlation view is sufficient to handle most analytic tasks. In
the data processing part, we use a peak detection algorithm to
extract peaks from videos. During the interviews, we learned that
automatic peak detection limits end users within the detected peaks.
If the ROIs of a particular end user are missed by the detection
algorithm, then users cannot analyze these ROIs. Therefore, if
the system allows end users to select the peaks themselves when
analyzing the data and update the views accordingly in real-time,
then the end users can quickly examine the results after they find
new interesting content.

As we have only collected data from two courses in this work,
education analysts may have difficulty drawing general conclusions
that are applicable to different courses. For instance, the lengths
of the two courses are significantly different, and their bodies
of literature are different as well. Therefore, we cannot draw
absolute conclusions as to whether or not video length may result
in differences among peaks. Nonetheless, the number of peaks
in long videos is indeed higher than that in short videos. This
result may be ascribed to the fact that the attention of learners is
retained in short videos, thereby resulting in few click action peaks.
If data from more courses can be collected and analyzed, then
course-level analysis can be performed, and numerous patterns,
which the current system can find, can be further examined. Thus,
a visualization system that supports course-level analysis is useful
and can enable users to investigate data from diverse aspects.

The roles of language and educational culture have been
commonly studied in MOOC analyses, and analyzing how their
roles can affect the formation of a peak in a learning behavior is
valuable. However, we are currently unable to obtain the detailed
profile information of learners. We plan to actively collaborate with
platform providers to obtain these data.

Combining the video content with peak analysis is also worthy
of further study. Previous studies such as [10] reported that videos
showing an instructors talking head are more engaging than slides
alone. Both of the courses we use for our system show the
instructors talking head most of the time together with slides
in the videos; thus, we did not draw the same conclusion. However,
as PeakVizor provides the corresponding video screenshots of
peaks, end users can easily analyze the data with the video content.
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By comparing the screenshots of forward seeks, the experts have
determined that learners often skip three types of videos: 1) the
opening of each video, 2) flashing the same slide or the instructor
talking in front for an extended period of time, and 3) the instructor
talking about his own opinion on some issues. The final type is
surprising to the course instructors; we speculate that the students
care more about the results and conclusions than the instructors.

In Section 5.2, we discussed a pattern regarding some learners
who download videos and subsequently watch these videos offline.
Some previous work regarding offline study, such as [3] and [48],
generated results suggesting that students who collaborate offline
may perform well in class. However, the problem regarding
offline watching behavior has not been discussed and studied. The
authors in [10] reported that the viewing activities of students who
downloaded videos and watched offline could not be tracked. In
the future, we plan to collaborate with a MOOC platform provider
to obtain the download records of learners and distribute some
questionnaires about the offline study experience of learners.

All our current analysis is based on the learners’ clickstreams;
therefore, if learners watch a certain segment without any additional
click behavior, then interpreting how they feel about that segment
is difficult. We admit that “unexpectedly” low activities (“valleys”)
can also be informative and useful for analysis. Even though we
did not examine this issue in this work given that none of our end
users expressed interest in this issue during the collaboration, we
believe that our visual analytic system can be easily extended to
detect and highlight such valleys for the purpose of exploring and
understanding unexpectedly low activities.

8 CONCLUSION AND FUTURE WORK

In this paper, a visual analytic system, PeakVizor, is presented to
help course instructors and education experts to analyze peaks in
video clickstreams in MOOCs from different aspects. Based on our
collaborations with end users, we first abstract the analytic tasks
and summarize the design requirements accordingly. PeakVizor is
then carefully designed to solve the tasks and meet the requirements.
We then conduct case studies and interview experts to evaluate
this system. Positive feedback and in-depth insights into learning
behaviors have confirmed the usefulness and effectiveness of the
system.

Nevertheless, PeakVizor can still be improved. In the future,
we will add a functionality which allows manual peak selection ac-
cording to the interests of users. We also plan to extend our system
in the following two directions. First, a visual analysis of MOOC
forum data can be added to enhance the understanding of learning
patterns. Second, a comparative analysis of different courses is
useful for users; therefore, we are considering the extension of our
system to support course-level analysis. Moreover, we will design
a more structured evaluation with multiple dimensions for users to
rate the usability of the system, and methods such as heuristics can
be used to evaluate it more systematically.
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