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Fig. 1. The user interface of Causality Explorer demonstrated with a real-world audiology dataset that consists of 200 rows and 24
dimensions [18]. (a) A scalable causal graph layout that can handle high-dimensional data. (b) Histograms of all dimensions for
comparative analyses of the distributions. (c) Clicking on a histogram will display the detailed data in the table view. (b) and (c) are
coordinated to support what-if analyses. In the causal graph, each node is represented by a pie chart (d) and the causal direction (e) is
from the upper node (cause) to the lower node (result). The thickness of a link encodes the uncertainty (f). Nodes without descendants
are placed on the left side of each layer to improve readability (g). Users can double-click on a node to show its causality subgraph (h).

Abstract—Using causal relations to guide decision making has become an essential analytical task across various domains, from
marketing and medicine to education and social science. While powerful statistical models have been developed for inferring causal
relations from data, domain practitioners still lack effective visual interface for interpreting the causal relations and applying them in their
decision-making process. Through interview studies with domain experts, we characterize their current decision-making workflows,
challenges, and needs. Through an iterative design process, we developed a visualization tool that allows analysts to explore, validate,
and apply causal relations in real-world decision-making scenarios. The tool provides an uncertainty-aware causal graph visualization
for presenting a large set of causal relations inferred from high-dimensional data. On top of the causal graph, it supports a set of
intuitive user controls for performing what-if analyses and making action plans. We report on two case studies in marketing and student
advising to demonstrate that users can effectively explore causal relations and design action plans for reaching their goals.
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Causal reasoning is a common task in data analysis and decision making.
Doctors may want to identify the root cause of a disease symptom
while marketers would hope to understand which customer segments
contributed the most to their revenue. Due to the high cost of controlled
experiments, most of the existing analytics systems apply correlation
analysis to derive such causal conclusions. However, the fact that
correlation is not causation motivates the involvement of causal analysis,
which aims to infer causal relations from observational data.

Two categories of exploratory causal analysis models, namely, the
constraint-based ones (e.g., SGS [51], PC [50]) and the score-based



ones (GES [11], F-GES [42]), have been experimented for causal
discovery. These methods apply different detection approaches but
share the same output, i.e., a causal graph where the nodes encode the
data dimensions and edges encode the causal directions. Numerous
high-value applications can be developed on top of these causal graphs.
For example, in digital marketing, analysts can use the causal graph to
identify important factors leading to purchase orders or simulate the
outcomes of different campaign strategies.

In recent years, researchers have designed tailored interactive visu-
alization systems for exploratory causal analysis. However, two main
challenges remain to be resolved to fully utilize the detected causal
graph for real-world applications. First, when detecting causal relations
in a high-dimensional dataset, the state-of-the-art solution is F-GES
model, which applies a greedy search for the causal relations. Although
the detection process can be highly accelerated, this raises an uncer-
tainty issue, i.e., the model cannot ensure the quality of the detected
causal relation. How to estimate and present the uncertainty of the
detected causal relations remains to be resolved. The second challenge
is the lack of interactive tools for utilizing the causal graph. Wang
et al. [53] have developed a visualization system for presenting the
causal graph and proposed interactions that can support the diagnosis
of the detected causal graph. Despite the usefulness, the system was not
designed to handle a large causal graph, which is commonly seen in do-
main datasets such as marketing, healthcare, and education. Moreover,
rather than exploring the causal graph, how to best integrate human
knowledge with the causal graph for decision-making applications like
simulations and attributions remains an open research question.

Consider a campaign use case scenario. A marketer Bob is design-
ing a campaign for promoting the subscription renewal of a group of
customers. Given the constraints of budgets, Bob hopes to only use a
few efficient marketing channels for the campaign. By applying cor-
relation analysis on historical marketing data, Bob identifies a set of
channels that are highly correlated with the past renewals of the group.
However, the selection is still difficult, since correlations do not imply
the pure effect of each channel. For example, among customers who
received sales emails and renewed, it is misleading to say all of the
renewals attribute to the emails, because many of the customers may
have already established a purchase intent before from other channels
such as social media. Besides, Bob also struggles with how to convince
the stakeholders of his campaign plan, since the performance of a plan
is hard to estimate without running expensive A/B testings and a large
number of testings will be needed given that Bob has no clue how to
narrow down the channel selection.

In this paper, we seek to address these gaps in the applications of
causal analysis by designing an interactive visualization system with
domain practitioners. We first interview real-world data analysts to
understand their fundamental design needs for applying causal analysis.
Next, we adopt the state-of-the-art causal discovery model to handle
the scalability issue raised by data dimensions and also extract the
uncertainty of the detected causality. Finally, we design a scalable
causal graph visualization to enable analysts to explore the causal
relations of high-dimensional data. Facet views and interactions are
tailored to support analysts conducting what-if analysis on the causal
graph. We evaluate the system on datasets from two different domains
and report on two case studies with practitioners from education and
digital marketing. The direct contributions of this work are:

* A set of 7 design needs collected through interviews with 5 do-
main experts for visualizing large causal graphs and conducting
what-if analysis.

¢ The design and implementation of an interactive visual analytics
system, Causality Explorer, for achieving practical causal analysis
by supporting (1) uncertainty aware visualization of large-scale
causal relations and (2) interactive what-if analysis and action
plan simulation.

¢ An evaluation through case studies with domain practitioners to
analyze education and digital marketing datasets.

2 RELATED WORK

In this section, we survey and discuss related literature around the
discovery, visualizations, and applications of causal relations.

2.1 Algorithms for Discovering Causal Relations

The goal of causal discovery [13,40] is to infer causal relations from
a multi-dimensional dataset. Causal relations are commonly modeled
as a Directed Acyclic Graph (DAG), where a node represents a data
dimension and a link represents the dependency between two connected
dimensions [46]. The arrows of the links indicate the direction of the
cause-effect relationship. Existing causal discovery algorithms can be
roughly grouped into two categories: constraint-based and score-based.
Constraint-based algorithms, including SGS [51] and PC [12,50], start
with a fully connected graph and eliminate the links by performing
conditional independence (CI) tests for each pair of dimensions. This
process requires exponential numbers of CI tests, which is not scalable
for large industry-level dataset. To scale up, GES [11], a representative
of the score-based algorithm, proposes a scoring function to estimate
a DAG’s fit to the dataset and transforms the detection problem to a
greedy search problem. Ramsey et.al. [42] further accelerated this
method and proposed F-GES. By introducing additional assumptions
and parallel computation techniques, F-GES can handle the causal
discovery of high-dimensional data. In this paper, we apply F-GES for
detecting the causal relations.

2.2 \Visualizations of Causal Relations

Effectively presenting the causal graphs is critical for helping ana-
lysts interpret the causal relations. Based on a literature review, we
summarize existing works into two categories: studies of causality per-
ception in visualizations and visual analytics systems for exploratory
causal analysis. In the causality perception category, Kadaba et.al. [29]
conducted experiments to evaluate the efficiency of static and ani-
mated graph visualizations on encoding causal information, such as the
strength, the direction, and the causal effect (positive or negative). Bae
et.al. [3] examined whether a sequential graph layout can help users
more easily realize the indirect causality and identify the root cause.
Rather than showing the causality detected from statistical models, Yen
et.al. [62] used bar charts to visualize the data and studied the perfor-
mance (e.g., accuracy) of making causal inference with visualizations.
Xiong et.al. [60] studied the level of causality revealed by visualizations
and found that users tend to draw causal conclusions rather than corre-
lations when data is presented by high aggregated visualizations (e.g.,
bar charts). These empirical studies of causal visualizations provide
useful design guidelines for our visual analytics system.

In real scenarios, it is often difficult to directly apply causal models
to address domain problems without interactive tools. Different visual
analytics systems are therefore proposed to integrate human intelligence
into the causal analysis. Elmqvist and Tsigas [20] presented a technique
called Animated Growing Polygons for visualizing the causal relations
between event sequences. Wang and Muller [53] introduced a system
that integrated automatic causal discovery algorithms and visualizations.
Users can inspect the detected causal graph and validate the causal links
with interactions and statistical evidence. They further addressed the
data subdivision problem in causal analysis with visualizations [54],
i.e., users can create causal graphs for different subgroups of data and
obtain insights by identifying the different causal relations among the
subgroups. Although existing works have extensively investigated how
to support the exploration of a causal graph, the graphs being evaluated
are usually much smaller than those in real-world applications.

As a trade-off between speed and accuracy, score-based causal dis-
covery algorithms (e.g., F-GES) are commonly applied by domain
practitioners, which extracts an approximated large causal graph where
each causal link is associated with a model uncertainty. How to visually
present the uncertainty of a causal graph is therefore important for
deriving trustworthy insights. Visualizing and communicating uncer-
tainty [28] in graphs [6,17,24,44,47] have received great attention in
recent years. Wang et.al. [56] analyzed the uncertainty issues raised
by graph layouts. Schulz et.al. [44] proposed a force-directed based
visualizations to present a probabilistic graph model. Among these
various works, Guo et.al. [24] studied the visualization of uncertainty
within edges, which is most related to our work. They have evaluated
the effectiveness of different visual encodings on presenting edge uncer-
tainties with common graph tasks. However, their evaluations focused
on the visualization of un-directed graphs while in causal analysis, each
causal graph is assumed to be a DAG and the directions of the edges
are important for interpreting the results. In this work, we address this



gap by exploring the design space of applying uncertainty visualization
techniques to directed causal graphs.

2.3 Applications of Causal Relations

Researchers of various domains, such as digital marketing [1, 49],
sports [10, 16,21, 38, 39, 52], and healthcare [7, 43], have proposed
statistical models to perform what-if analysis on data. Visual techniques
and interactive tools [33,57,59] have been developed to provide user-
friendly interfaces for these models. A useful scenario in what-if
is changing the feature value of a prediction model and inspect the
updated model results for model comprehension [2,27,34, 36,63, 64].
Similarly, Prospector [31] allows users to change the feature values
of an instance and explore how this change affects the probability
of classifications. Recently, focusing on the fairness issue, Wexler
et.al. proposed WIT [58] for conducting what-if analysis with machine
learning models. With the aid of tailored interactions, users can test the
machine learning models with different inputs and therefore obtain a
better understanding of the model performance and the mechanism.

In addition to the model comprehension, researchers have also stud-
ied how to apply what-if for addressing domain-specific problems [37].
For example, in the domain of sports, what-if analyses are usually
used to prospect the effect of certain tactics. To this end, based on a
Markov chain model for predicting players’ actions, Wang et.al. [55]
design a visualization system to help table tennis analysts interactively
simulate the game result of applying different player tactics. Many
existing work [25,61] also applied deep learning models to compute the
predictions for what-if and attribution. However, as most deep learning
models are regarded as black-boxes, users are unclear why the deep
learning model would produce certain results when doing what-if.

Causal analysis also can be used to accomplish what-if tasks by
doing interventions on the causal graph [46]. Compared with the
black-box deep learning models [26, 32], causal analyses provide a
better explainability since users can interpret how the predictions are
generated by referring to the causal graph. Moreover, using causal
analysis to conduct what-if can reduce the effect of data bias [46].
Despite the usefulness of causal analysis, few visualization researches
have investigated applying causal analysis for interactively conducting
what-if. In this paper, we seek to address this gap by designing tailored
system designs and user controls for conducting what-if analyses on
top of a causal graph.

3 INFORMING THE DESIGN

This research is the result of a long-term collaboration with data analysts
in a large technology company. The company collects a large amount
of data about visitors of their online retail stores. By exploring the
data, analysts hope to understand what kinds of behavior patterns or
user characteristics are likely to influence the outcomes (e.g., product
purchase, service subscriptions, and terminations).

The analysts currently use correlation models to characterize the
relation between factors. However, correlation is a measure for de-
scribing the relevance between factors’ values and cannot be used to
answer questions like Does changing the value of A lead to the change
of B. Hence, the insights derived from their current correlation models
were uncertain and obscure. These limitations motivated the analysts
to apply causal models to investigate how the different factors interact
with each other and how much each factor influences the outcomes.

In this section, we introduce an interview study with the analysts to
collect their design needs that drive our system development.

3.1 Participants and Process

We recruited five data analysts (one female, domain experience 4-8
years each) from the technology company, who were interested in
causal analysis. Three of them were marketing analysts who were
interested in adopting causal analysis for their customer profile and
behavior data (P1-3). The other two were experts in causal analysis,
who had more than three years of experience developing and applying
causality-based models (P4-5).

We conducted two semi-structured interviews with the marketing an-
alysts and causal experts, correspondingly. During each interview, we
began by introducing the concept of causal analysis with the campaign
use case scenario (described in Section 1). Then, we asked the partici-
pants to describe other causal analysis scenarios in their daily jobs, the

tools they have used for conducting causal analyses, and the difficulties
and needs with utilizing those tools. We encouraged analysts to share
and describe the real challenges they have faced in different use cases.
We also summarized the needs and conducted a follow-up interview
with the two causal experts to verify the possibility of addressing these
needs with causal analysis. For each interview, we had an experimenter
responsible for taking notes and coding the transcripts.

3.2 Design Needs

Based on the interviews, we identified 7 key design needs across 3

major requirements. For the validity and the generalizability, each

design need is mentioned by at least two interviewees.

R1 Support for Examining Causal Detection Results
The marketing analysts commented that an interface for “seeing
the whole causal graph” can help understand the causal detec-
tion results and answer questions such as “What are the most
related causal factors of an outcome?” However, the visualiza-
tion tools they have used are not scalable for the presentation of
large causal graphs (N1 | P1-3). Moreover, the causal experts
commented that the automatic causal discovery algorithms usually
assigns different levels of uncertainty for each causal relation. Con-
sidering the reliability, the marketing analysts would like to focus
on more convincing causal relations in their analyses. Hence, it
is also important to show the uncertainty of the detected causal
relations (N2 | P1-5). The causal experts also emphasized that
inspecting the data quality with an interface (N3 | P4-5) is nec-
essary for causal analysis since the causal detection usually requires
certain assumptions in the data.

R2 Support for Identifying Influential Factors
According to the marketing analysts, before purchases, users may
receive multiple treatments simultaneously, such as discount e-
mails and advertisements on social platforms. How to “correctly
identify the contribution of multiple factors on a specific outcome”
therefore becomes a major task for evaluating the existing market-
ing plans. Hence, the system should allow users to quantitatively
estimate the influence of each dimension (N4 | P1-2, P4). More-
over, rather than showing a numerical measure for each factor,
analysts would like to know “how a marketing factor influence the
outcomes” and “what are the intermediate variables from factors
to outcomes.” This requires an embedded visualization of both
influential factors and causal information (N5 | P1-2, P4).

R3 Support for Making What-If Interactions
The marketing analysts usually create a set of marketing plans
to improve targeted outcomes. Although they could anticipate
the effect of each plan based on their knowledge, the detailed
change of each outcome is still unclear, which poses challenges for
the decision-making process. Therefore, the marketing analysts
expressed their needs of simulating the marketing plans to see
the possible effect (N6 | P1-5). P1 also emphasized that “notifying
the side effect of a marketing plan” (e.g., some plans may increase
the purchase in the next year but lower users’ loyalties) would also
be helpful for their works. This requires the system to present the
local as well as the global effect of an intervention (N7 | P1-3).

4 CAUSAL MODELING

In this section, we introduce the background of causal modeling. We
first provide a formal definition of causal graphs and then describe
approaches for discovering the causal graph for a multi-dimensional
tabular dataset. Finally, we introduce the uncertainty in automatic
detected causal graphs.

4.1 Causal Graph Definition

The idea of using a DAG to represent the causality is from the structural
causation model (SCM) [46]. A causal graph is defined as G = (V,E)
where V represents nodes and E represents edges. Each node is a
variable and each edge is a causal relation. For X,Y € V, if X is the
parent of Y, then X is said to be the cause of Y. If there is no edge
between X and Y, X and Y are independent when other variables are
controlled, noted as X I Y|Z,3Z C Wixyy- Vi(xy) represents all
variables in V except X and Y. For example, for a causal graph of three
variables < X,Y,Z >, the absence of the edge between X and Y (which
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Fig. 2. Explanation of the causal discovery method F-GES. The computa-
tion consists of a forward phase (a) and a backward phase (b). Forward
phase: Given a causal graph, this phase will iteratively insert a new edge
with the maximum score increase into the graph. Backward phase: Given
a causal graph, this phase will iteratively delete an existing edge with the
maximum score increase from the graph. Both the forward phase and
the backward phase will be stopped when the score does not increase.

are correlated according to the Pearson Index) means that X and Y are
independent when conditioning on Z.

The independence between variables can be examined by conditional
independence (CI) tests. The goal of CI tests is similar to controlled ex-
periments, i.e., testing the true relation between variables by controlling
other variables. It is popular to use partial correlation to do CI tests for
numerical data. More descriptions of the CI tests for different types of
data can be found in [15]. Following this definition, each causal graph
G can be mapped to a distribution PoverV. Pisa joint distribution of
variables in V and can be factorized as P = [T, P(Vi|Pa(V;)) ,where
n is the total number of nodes in V and Pa(V;) is the set of parents of
Vi. Therefore, a graph Gis equal to the true causal graph G when its
distribution P is equal to the real data distribution P.

4.2 Causal Discovery

According to the definition of the causal graph, the constraint-based
methods are firstly proposed to detect causal graphs from tabular data.
The algorithm will test the dependency of each pair of variables and
for each pair there will be at most (n — 2)! numbers of conditions
that need to be tested. Although researchers have proposed different
approaches to reduce the number of required CI tests, doing one CI
test is still very time-consuming. For example, the time complexity of
partial correlation is O(m3), where m is the number of data dimensions.
Hence, the constraint-based methods, which are considered as precise
but time-consuming, are not suitable for the big data scenario.

We apply the state-of-the-art F-GES [42] to detect the causal graph
from big data. Here we briefly introduce the detection. The detection
contains two phases. The first phase is a forward phase (Fig. 2(a)).
Given a causal graph G, this phase iterates over every alternative one-
edge addition. Fig. 2(a, left) shows that a new edge C — D is added to
the existing G and F-GES will compute a score for this addition. The
score here is a measure of how well the causal graph can be used to
fit the data distribution. A widely used score is Bayesian Information
Criterion (BIC) [8,45]:

BIC = In(n)k —2In(L) (1

where n is the sample size, k is the number of parameters, and L =
P(X|G) is the maximum likelihood. Hence, the score contains two

parts, a penalty of the complexity of the causal graph structure and a
fitness between the causal graph and the data samples.

An one-edge addition with the highest score improvement (add C —
E in Fig. 2(a, right)) will be chose. The first phase iteratively conducts
this one-edge addition until no more additions can improve the score. F-
GES then proceeds to the backward phase (Fig. 2(b)). Backward phase
is similar to forward phase except that one-edge addition is replaced by
one-edge deletion (Fig. 2(b, left)). For each iteration, backward phase
conducts the one-edge deletion with the highest score improvement
(delete C — D in Fig. 2(b, right)). In this manner, F-GES obtains a
causal graph that can fit the data distribution without much overfitting.
Overall, the computation can be decomposed which allows parallel
computation and the computation can be reused during the iteration.
Hence, F-GES achieves a high scalability of dimensions.

Despite the effectiveness of causal discovery methods, the detected
causal graphs often entail uncertainties of the causal link. As stated
by [42], it is possible to introduce false-positive links into the causal
graph. To estimate the uncertainty of a causal link e, we compute the
BIC score difference of a causal graph with and without this link. i.e.,

Uncertainty(e) = BIC(G) — BIC(G,) 2)

Here the uncertainty is computed after the backward phase of F-GES,
which ensures that every edge in the causal graph meets BIC(G) >
BIC(G,). Hence, the uncertainty value is always positive.

4.3 Intervention

Intervention can be interpreted as an interaction of setting data dimen-
sions to specific values and inspecting the effect. An intervention can
be represented as a set of < key,value > pairs. Keys represents the
variables (e.g., weight) and values represents the specific value of vari-
ables (e.g., 100kg). The result of an intervention is a set of distributions
{dy,dy,...,d,} where d; is the distribution of V;. Here d; is interpreted
as the possible distribution of V; when fixing variables’ values accord-
ing to the intervention. Users can compare between di1 (origin) and

dl-2 (after intervention) to see the effect. For example, when trying
to propose a new design of cars, users can set < horsepower, 100 >
and obtain a set of distributions. They may find that 4%, is smaller

mpg
than d, pg and reject this setting. The intervention is accomplished by

sampling over the causal graph. The detail is as follows.

We first define a sample of the causal graph as {vy,vy,...,v, } where
v; is the value of V;. According to the causal graph, v; can be sampled
from its conditional probability distribution (CPD) P(V;|Parent(V;)).
For example, when vy rsepower is 100ps and vgispracement 1 2.0, Vypeigns
can be obtained by sampling over its CPD P(weight|horsepower =
100, displacement = 2). Particularly, the value of variables without any
parents can be obtained by sampling over their probability distributions
P(V). Therefore a sample of the causal graph can be obtained by
sampling variables following the topological order. When doing an
intervention< V;,v; >, each variable’s value can be sampled from
P(V;|Parent(V;),V; = v;). We can sample multiple times from the
causal graph and compute a new distribution for each variable from the
samples. These distributions are regarded as the intervention result.

4.4 Attribution

In marketing, attribution analysis is regarded as explaining why port-
folios can create certain performance compared with the benchmark.
Different attribution models, such as last-click attribution and proba-
bilistic attribution, have been proposed for assigning credits. Causal
graphs are also helpful for attribution analysis. A significant advantage
of causal-based attribution is that the computation result is explainable,
i.e., users can comprehend why a channel would be assigned certain
credits. Conducting attribution with causal graphs is based on the op-
eration of intervention. Given a dimension V; and one of its value v’j,
we refer the attribution analysis as finding the effect of other variables
on the proportion of v’j. To compute the effect, we will first identify
variables that have paths to V;, which referred as S, according to the
causal graph. The rest variables are regarded as no causal effect. With
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nent for supporting the causal graph exploration and what-if analysis.

S, we conduct the following computation process for every v§~
F) = Abs(P(/[do(V; = v0)) — PO Ido(Vi #40))) @)

where f (v’]) represents the effect of v; on v’j and P(v’j|d0(X )) repre-
sents the probability of vfj when doing intervention X. Therefore, the
effect of V; on v'; can be computed as Max({f(vj-)}).

5 SYSTEM DESIGN

Informed by the interview study, we iteratively designed Causality
Explorer for conducting exploratory causal analysis. During a 6-month
iteration, multiple prototypes were designed and tested with domain
practitioners before reaching the final system. In this section, we
describe how we designed the Causality Explorer system based on the
user needs gathered from the interview study. For simplicity, we use
an audiology dataset [18] (200 rows, 24 categorical attributes) from
the UCI repository to illustrate the main functionalities and the causal
graph layout designed for high-dimensional data.

5.1 Overview and Workflow

The Causality Explorer system consists of two major interface compo-
nents for addressing the user needs (Fig. 3): a graph view for exploring
the causal relations (R1) and a what-if analysis view for simulating a
specified interventions (R2) or for detecting attributing factors for a
specified goal (R3). The main workflow of this system is as follows.
Users will explore the causal graph first and learn the convincing causal
mechanism embedded in the data. According to users’ prior knowledge
or domain-specific requirements, they may focus on the improvement
of specific data dimensions and utilize the attribution component to find
a set of options that are helpful for the improvement. Finally, users will
test over the options with the what-if component and make decisions
according to the test result.

The rest of this section will describe the design of each component
and introduce our design process and rationales. We also provide
implementation details at the end of this section.

5.2 Causal Graph Visualization

As stated by R1, a causal analysis usually starts with an exploration of
the causal graph. To this end, we propose a novel scalable causal graph
visualization to support the causal analysis of high-dimensional data.

5.2.1 Encoding of Nodes and Links

As shown in Fig. 1(a), in the graph visualization, each dimension is
represented by a piechart (Fig. 1(d)) where each sector encodes the
proportion of a dimension value. This can help users learn the charac-
teristic of each dimension and provide guidance for exploration and
validation. For example, it can help users quickly filter out dimensions
that most instances share the same value.

Links indicate the causal relation and the direction is consistently
from the upper node to the lower node. For example, the connection
between roaring and nausea (Fig. 1(e)) means that roaring is the cause
of nausea. The uncertainty of a causal link, which is computed in
Sec. 2, is encoded by the degree of thickness (Fig. 1(f)) where a thicker
link represents a more confident relation. As stated by Guo et.al [24],
different visual channels, such as color, lightness, and transparency,
are available for encoding the uncertainty of links. Regarding the
uncertainty as the most important feature of a link, we decide to use
the thickness channel, one of the most effective channels of line, as
the visual representation. Users can double click on a node and the
causality subgraph of this node will be displayed (Fig. 1(h)).

5.2.2 Graph Layout

The position of each node is determined based on its related causality,
i.e., the vertical position of a node is higher than each of its child nodes
in the causal graph. With this layout, users can quickly identify the
causal direction and the related causal factors of a node. This layout
is formulated according to the discussion with experts. Based on the
discussion, two design criteria are proposed for locally and globally
explore the causal graph respectively.

1. The direction of each link should be explicit: When locally
exploring a causal graph, the most important task is to find the
causes of a specific node. Emphasizing the direction information
is helpful for the cause identification.

2. The role of each node should be clear: When globally explor-
ing a causal graph, identifying two types of nodes, the root with 0
in-degree and the leaf with 0 out-degree, is helpful for perceiving
and diagnosing the graph. The two types of nodes can seem as an
analogy to the input and output of a causal graph.

Here, we describe how to generate a legible causal graph that can
satisfy the two criteria. We adapt existing layered graph layouts [4]
and techniques for reducing edge-crossings [19] to the causal graph
visualization. Although the layered graph layout has been applied in
many existing applications, adapting these approaches to the visualiza-
tion of a large causal graph still encounter multiple challenges, such
as the cross-layer causal links and the aggregation of causal structures.
The details of generating a tailored layer graph for visualizing a large
causal graph are as follows.

Step 1: Layout Nodes by the Topological Order

This step is to fulfill the first criteria. The direction of links is usually
indicated by arrows in DAG. This encoding, however, can create severe
visual clutter for a large causal graph.This step is to place nodes into
different layers where all the causes of a node are from the precedent
layers. The idea is to use the most efficient visual channel (positions) to
encode the most important information (directions). This problem can
be addressed by finding a topological order of nodes. The topological
order is commonly seen in a dependency graph. In this order, each node
is given after all its dependent nodes (Fig. 4(a, left)). The topological
order can be acquired for every DAG [14] and we use this order to form
the layer of each node as

Layer(N) = Max({Layer(N;)|N; € C(N)}) +1

where N represents a node and C(N) represents all causes of a node
N. The layer of each root node is set as 0. Each node (Fig. 4(a, right))
is placed under all its dependent nodes (i.e. its causes) and the causal
direction is from up to down. With this layout, we can find that there
are 5 root causes (the top nodes of Fig. 4(a)) in the audiology dataset.
Node Aggregation: The result of step 1 may face important scala-
bility issues, i.e., the number of layers could be very large and users
cannot inspect the whole causal graph at a glance. To address this issue,
we extract a special causal structure, causal chain (Fig. 4(a, black)),
from the graph. There are three main causal structures in a causal
graph [51]. Among the three structures, the chain structure (e.g., “A”
to “B” to “C”) is considered to be semantically-simple while having
significant effect on the number of layers. For example, a causal chain
with length L would require L layers to present this structure. Therefore,
we transform the chain structures to aggregated nodes. The process can
be found in Fig. 4(b, left) and the corresponding layout can be found in
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Fig. 4. Process of producing a legible layout for a large causal graph

using the audiology dataset [18] (200 rows, 24 categorical attributes).

(a) Divide nodes into layers according to the topological order to ensure
the readability of the causal directions. (b) Find the chain structures and
aggregate the nodes in the chains to increase the visual scalability. (c)
Render cross-layer links as glyphs to reduce the visual clutter.

Fig. 4(b, right). Note that we only aggregate chain structures that have
no links to other nodes out of the chains.

Cross-Layer Links: This layout also leads to cross-layer links
which can create visual clutter (Fig. 4(b, orange)). The cross-layer
links refer to links that connect nodes across more than one layer. For
example, the link A to C (Fig. 4(c, left)) is a cross-layer link as A is in
layer 1 while C is in layer 3. We have found two options to address this
issue. The first one is to turn the cross-layer links to orthogonal links to
avoid the clutter. This is useful when the number of cross-layer links is
limited. However, when dealing with a complex causal graph, multiple
orthogonal links may intersect with each other and causes difficulties
for the link perception. The other option is to hide the cross-layer links
and use glyphs to encode the cross-layer causes. For each node, if there
is a cross-layer link connected to this node, we will place a glyph by
this node to encode the hidden causes. As shown in Fig. 4(c, left), for
the link A to C, we hide this link and place a glyph near the node C to
represent that there is a cross-layer cause. Users can hover on node C to

see the detail. Considering the scalability, we adopt the second option
in our system. The layout after this step can be found in Fig. 4(c, right).
The current design uses the number of glyphs to encode the number of
hidden cross-layer causes. This is to keep users aware of how many
cross-layer causes they need to search when hovering over the node.

Step 2: Refine Layout by the Role of Nodes

This step is to fulfill the second criteria. After step 1, all the root nodes,
i.e., the node without any linked causes in the causal graph, are placed
in the first layer. The leaf nodes, however, are scattered in different
layers and hard to identify. To highlight the leaf node, we place these
nodes on the left side of layers. As shown in Fig. 1(g), prolonged is a
node without any out-degree and therefore is placed at the left. We did
not choose to use popular highlight techniques like colors and sizes to
ensure a consistent encoding (position) of leaf nodes and root nodes.
After setting the position of these two types of nodes, the layout will be
refined to reduce the number of link crossings. Reducing link crossings
of bipartite graphs is NP-hard [19]. Here we use a greedy approach to
reduce link crossings under the constraint of placing leaf nodes to the
left side of each layer.

5.2.3 Design Alternatives

The design is an iterative process and certain design alternatives are
produced. Regarding the scalability as the major issue, we first consider
the application of the force-directed layout. Due to its efficiency of
reducing visual clutter and preserving community information, force-
directed layout is widely adopted for visualizing large graphs and has
also been used to visualize causal graphs [53]. We apply this layout on
the marketing dataset and present it to our experts (Fig. 5(a)). However,
the experts commented that the causal directions are hard to perceive,
as there are numbers of arrows in the graph. It is also hard to track the
causal path between variables. Recognizing this problem, we consider
the readability of causal links as the first priority issue and implement
the sequential layout (Fig. 5(b)) based on a spanning tree algorithm [54].
The experts appreciate this layout. However, when applying it to a
large causal graph, various inconsistent causal directions are identified.
Although most links have a top-to-down causal direction, a few links
within the same layer have different directions. It is hard for experts
to quickly notice this inconsistency. According to users’ comments,
we further design the current layout to address the readability and
the scalability issue for better accomplishing causal tasks. During
our design process, the largest causal graph that we have explored
with this layout contains 186 edges and 100 nodes, which is already
considered as a very large graph by our domain experts. Hence, the
experts appreciated this layout and regarded it as an applicable solution.

5.3 What-If Analysis

Users can accomplish interventions and attributions by interacting
with the Dimension view and the Table view. In the Dimension view
(Fig. 1(b)), each histogram represents the distribution of a dimension.
We use the bar height to encode the proportion of a value and arrange
the x coordinate of each bar according to the descending order of bar
heights. Due to the limited space, the histogram shows the top 10
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Fig. 5. The alternatives of causal graph layout. (a) A force-directed
layout. Although it can show nodes and links in a scalable manner, the
readability of the causal link is low. (b) A spanning-tree layout. Most
directions of the links are consistent. However, a few links (highlighted)
with different directions may mislead users.
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Fig. 6. Interfaces for conducting intervention and attribution. Users can
turn to the table view (a) and hover on a row to open a control panel (b).
Clicking the intervention button (b) can set the dimension to a specific
value (c) and the result of intervention will be updated in the table view (d)
and the dimension view (e, f). Users can also click the attribution button
(b) to find influential channels on this dimension value. The attribution
result of the specified value (g) will be presented in the causal graph (h,
i). A larger size of nodes represents a larger influence. Users can click
the button (j) to remove the attribution result.

proportions when a dimension contains numerous values. Users can
click on a histogram and the detail of the dimension will be shown in the
Table view (Fig. 1(c)). Each row shows the name and the proportion of
a dimension value. When hovering on a row, a control panel is provided
to help users establish the intervention and attribution (Fig. 6(a)).

5.3.1

Users can click on the intervention button (Fig. 6(b)) to fix the value of a
dimension. For example, Fig. 6(c) shows that users are setting the class

Intervention

to a specific value cochlear_unknown (do(X = x1)) for all the instances.

Users can iteratively fix the value of dimensions (do(X = x1,Y =y1))
and the intervention setting will be stored in a panel (Fig. 6(c)). By
clicking on the run button (Fig. 6(c)), the backend will compute the
effect of this intervention on all the other dimensions. According to the
computation process (Sec.4.3), the effect on a dimension is represented
by an estimated distribution. The estimated distribution will be updated
in the table (Fig. 6(d)) and the dimension view (Fig. 6(e, f)).

We propose a design named diff bar chart to help users more
easily compare between the original distribution and the estimated
distribution of multiple dimensions. As shown in Fig. 6(f), the original
proportion is encoded by the blue bar. The increased proportion is
encoded by the green bar and the decreased proportion is encoded by
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Fig. 7. Design alternatives of visualizing the original distribution and the
estimated distribution for the visual comparison.

the red bar with a texture. We use the texture to emphasize that the
cover region “disappear” after the intervention, which is more intuitive
and appreciated by users. Fig. 6(f) shows that with the intervention,
the proportion of ar_c has been changed while the proportion of noise
(Fig. 6(e)) is consistent. Users can inspect over the diff bar charts to
obtain an overview of the effect of an intervention. Moreover, users
can click on a diff bar chart to see the detail of a dimension in the Table
view. Users can click the remove button (Fig. 6(c)) to clean the result.

5.3.2 Attribution

Users can click on the attribution button (Fig. 6(b)) to identify the contri-
bution of each dimension to the clicked dimension value. For example,
when clicking the attribution button of class = cochlear_unknown, the
causal graph will be updated accordingly to show the result of current
attribution. As stated by Sec. 4.4, the contribution is represented as a
percentage value. We use the size of a causal node to encode its con-
tribution where a larger node represents a larger contribution. In this
case, noise (Fig. 6(h)) contributes most to the dimension value class =
cochlear_unknown (Fig. 6(g)) while fluctuating (Fig. 6(1)) is the second
largest dimension. This means that users can try to change the value of
noise and fluctuating if their target is to change the proportion of class
= cochlear_unknown. Users can click the remove button (Fig. 6(j)) to
clean the attribution result.

5.3.3 Design Alternatives

During the design process, we have identified several alternatives of
the diff bar chart. There are four basic techniques for conducting visual
comparison [23], i.e., juxtaposition, superposition, explicit encoding,
and animation. Juxtaposition places bar charts of the original distribu-
tion and the estimated distribution separately, which is not effective as
the corresponding bars of the same dimension value are apart from each
other. Animation is widely used to show the transition of data changes.
However, since our comparison involves a set of dimensions and values,
it is hard for users to track the concurrent change of multiple visual
elements. Therefore, we explore the rest design space and propose
three different designs based on superposition, explicit encoding, and
hybrid, respectively. For the superposition (Fig. 7(a)), we place the
original bar and the estimated bar side by side for the comparison.
Although it is intuitive, this would require a much larger visual space
than the histogram since a dimension usually contains various values.
For the explicit encoding (Fig. 7(b)), we present the computed differ-
ence between the original and estimated proportion. However, users
commented that the absolute value before and after the intervention is
also important. For example, the purchase rate increasing from 10% to
15% is much better and harder than from 5% to 10%. We summarize
users’ comments and propose a hybrid design (Fig. 7(c)). Users can
observe the absolute bar height and the difference concurrently.

6 EVALUATION

In this section, we report two case studies in different domains to in-
vestigate the applicability of our system. We also conducted interviews
with domain experts to discuss the usability and limitations.

6.1 Case Study I: Education

In the area of education analysis, an important topic is about analyzing
the school dropout [9,30,41]. For a university, there will be cases of
school dropouts every year. The analysts aim to find out reasons for the



school dropout and identify possible improvements to the school system
to reduce the dropout rate. We invited two analysts (an advisor of the
school department and a Ph.D. student of the College of Education) to
conduct this case study.

6.1.1

The analysts provided a dataset of 3,500 students from a college. The
dataset includes students’ personal status and their course grades. All
the provided data has been anonymized. The personal information
includes Gender, Region, Political Status, Graduated Highschool,
Major, and Student Status. The course grades are provided as a list
in which each row contains the course name, the corresponding credit,
the student id, and the grade of the student. For each student, we
aggregate the course grades into two dimensions, GPA and Fail. GPA
is a categorical data which categorizes students’ grades into four levels
according to the 4.0 scales. Fail is a binary dimension which represents
whether a student has records of failing an exam.

Dataset

6.1.2 Process

The analysts first focused on the causal graph to inspect the detected
causal relations (R1). By exploring the causal graph, the analysts
found two nodes on top of the graph, i.e., Gender and Region. The
experts agreed with the result as these two dimensions apparently can-
not be influenced by other dimensions. The analysts then iteratively
validated each link’s truthfulness according to their knowledge. The
link Region—Graduated Highschool first attracted the analysts’ atten-
tion. The thickness of the link indicated that the model is confident
that Region is the cause of Graduated Highschool. The analysts com-
mented that students usually graduate from their local high school and
it was glad to see that this straightforward causal relation is identified,
which significantly increased their confidence in the detection. The
correctness of other links was also verified in later stages, such as
Gender—Ma jor, Region—Ma jor.

Finally, the analysts examined the causal factors of Student Status.
Fail was connected to Student Status and beside the node of
Student Status, there were two glyphs representing two cross-layer
causes. The analysts hovered on the node of Student Status and found
that the cross-layer causes were GPA and Major. It was expected
that GPA and Fail would have links pointed to Student Status as the
most direct reason for a student’s dropout is that he/she is not able
to finish studies. However, the link of Major—Student Status was
unexpected. The expert commented that this represented that certain
majors might have inappropriate settings or disciplines which therefore
affected students’ dropout.

To find possible ways of reducing the dropout rate, the analysts
selected the dimension of Student Status in the dimension view and
set the attribution as Student Status = dropout in the table view (R2).
After setting the attribution, the analysts observed that the size of nodes
in the causal graph changed and the largest node was Fail. However,
this was the dimension that cannot be directly intervened and therefore
the analysts decided to try interventions of Ma jor (The second largest
node). The college had 12 different majors while four of them account
for more than 80% of students. The analysts first iteratively set the
four main majors as interventions and found all of them can lead to a
decrease of the dropout rate (R3). In addition to the four majors, the
rest of the majors are mainly collaborative projects except for a special
class, which was established to recruit students with high entrance
marks and was managed differently compared with regular majors.
Setting the major to this class, the analysts found that the dropout
rate had a significant increase from 1.3% to 7% (R3). The analysts
hypothesized that students in this class may struggle with great pressure
due to the sense of competition. Applying additional psychological
counseling to this set of students should help reduce the dropout rate.

6.2 Case Study II: Digital Marketing

To understand the applicability and usefulness of Causality Explorer
in digital marketing scenarios, we conducted a case study with the
three marketing analysts (P1-3), who participated in our needfinding
interviews and our system prototyping iterations. The case study lasted
about three months through bi-weekly meetings, consisting of require-
ment discussions, data preparation, and data exploration.

6.2.1

The marketing analysts provided a real data sample of the visit logs
of an online retail store. Each row in the log represents a visit and
the columns record different dimensions about the visit, such as the
device type and location of the visitor, the referral channel and landing
page of the visit, and if a purchase was made during the visit. The data
contained 10,000 visits sampled by a time window and 32 dimensions.
The analysts categorized the data dimensions into three types:

* Outcomes. dimensions that are considered as success metrics
in the analyses, such as the number of purchase orders or the
click-through rate of ads.

¢ Interventions. dimensions that can be directly managed by mar-
keting tactics. For example, marketers can prioritize the targeted
locations of campaigns or adjust the investment across different
referral channels for their websites.

* Observations. dimensions that cannot be directly changed by
marketers, such as visitors’ browser or device types, or their
internet connections (e.g., Lan/Wifi or Mobile).

Dataset

6.2.2 Process

After loading the dataset and the causal graph, the analysts decided
to start by reviewing the graph nodes and links to check if the data
were correctly visualized. The analysts carefully inspected the value
distribution of each dimension by exploring the Graph View and Table
View (R1). They found that while some of the nodes have a balanced
distribution of the values, many were dominated by a population one
(e.g. Referral Channel, Browser Type, and Language). Also, two of
the nodes had only one single value (JavaScriptversion and Device ID).
“The piecharts around the nodes are extremely helpful,” P1 commented,
“in a few minutes I already see several data ingestion problems that we
need to report to the data engineering team.”

After confirming that the data is correct, the analysts started to
explore and discuss the graph links (R1), which showed the causal
relations between the nodes. All the analysts found the link easy to
understand. P1 commented that “I like the top-down layout. It is very
easy to keep track of what caused what.” After a short exploration,
the analysts identified several causal relations that they were expected
to see, such as Country—City and Re ferral Channel— Landing Page.
They also observed that the links for representing these causal relations
are all thick lines, which indicated a low uncertainty and further con-
firmed their assumptions on the data. P1 added that “these strong lines
look very intuitive to me. I immediately knew they are the reliable re-
sults that I need to pay attention to. Several causal relations were new
and unexpected, such as Referral Channel—Number of Searches
and Browser Type—Operating System. “It seems there are far more
causalities in the data than I know about” P3 commented excitedly.
However, P3 requested to gather more data to verify these findings.
“The links show a relatively high level of uncertainty compared to the
rest of the graph,” he explained.”

To narrow down the analysis, the analysts clicked on the Purchase
node, which represents the outcome in the analysis, and the graph was
reduced to 7 nodes that have causal relations with the outcome. The
analysts hovered on Purchase node and the Table View showed the
number of visits that led to at least one purchase order and those that
led to zero. The analysts were surprised that the purchase rate was
higher than usual during the time window of the sample, and clicked on
the attribution button to analyze how much influence each dimension
had on Purchase = true (R2).

From the attribution results, Login Status had the largest influence
while Landing Page and Referral Channel had a similar but smaller
influence. “These factors are exactly what I was thinking about,” P1
commented, “we can probably adjust the referrals or land more traf-
fic to a certain page, but it would be hard to make people register
or login.” P2 agreed and proposed to perform what-if analysis on
the Landing Page since “it is very easy to verify through A/B test-
ing”. The analysts one-by-one selected the 10 most popular landing
pages and reviewed the changes to purchase rate (R3). Compared to
Homepage, they identified three alternatives that had a positive influ-
ence on purchase rate, including Product Search, Product Category,
and Purchase History. They decided to formulate A/B testings to
further verify the results and share with their product managers.



At the end of the analysis, P1 commented that “this tool is very
flexible to use and the graph provides a clear picture about what is
important to purchase and what are not.” P2 suggested testing the
causal model with data from a larger time window and evaluate the
accuracy against A/B testing results. P3 requested a function to support
the comparison of multiple what-if simulation results.

7 DISCUSSION

The case studies suggest that Causality Explorer is helpful for ac-
complishing tasks of causation exploration and what-if analysis. The
analysts are able to identify the main causal factors of important dimen-
sions and clear causal pathways from the causal graph. The interaction
is also useful for testing the effect of different interventions. The ana-
lysts were excited about this tool. “The relation provided by the causal
graph is really clear.” They liked the layout of placing nodes in layers
which presented the causal direction explicitly. The animation of the
causal link is also appreciated, as it is intuitive and aesthetic. The
usability and the effectiveness of the what-if analysis is approved by all
the analysts. One analyst commented that he can formulate quantitative
evidence of the effect of certain actions when giving a report.

The analysts also provided several useful suggestions for improving
the system. First, the dimension view can be further improved by adding
richer interactions, such as deleting and merging dimensions, so that
users can immediately resolve minor data preparation issues without
leaving the system or losing the already performed analyses. The
analysts also commented that the what-if interactions can be improved
by tracking the history of trials instead of only showing the latest results,
so that they can easily compare the effects of different action plans.
Adding a new dedicated panel for comparison tasks was also requested.

From the discussion with experts, we have identified a set of impli-
cations and summarize it as follows.

Model Explainability. The first implication is about the need of
explaining the detected causal links with visualizations. From the case
studies, we observe that users commonly ask questions about why
there is a link between the two nodes. Although we have presented the
uncertainty of each link, users are not clear how the model finds these
links. We hypothesize that using visualizations to explain the causal link
can significantly improve users’ confidence about the causal detection
result and thereby facilitate the causal analysis. We have considered two
different solutions for addressing this issue. One is to visually present
specific cases in the raw data for supporting the detection result and
the other is to visualize the causal detection process. The analysts also
suggested that showing the “deleted correlations” is potentially helpful
for the causal understanding. Explaining why certain relations are
considered as correlation but not causation may help users understand
the detection process which provides guidance for the link validation.

Applications of Causal Analysis. The second implication is to
apply causal analysis to the user segmentation and the comparative
analysis of user groups. User segmentation is to segment users into
explainable groups according to their characteristics, such as ages, gen-
ders, and regions. Applying causal analysis to each group of users can
significantly improve the explainability as analysts can clearly state the
group difference by comparing the causal links. However, this applica-
tion is blocked by the causal discovery algorithms. User segmentation
is usually an interactive process that cannot be supported by existing
causal discovery due to the high time complexity. Parallelizing the
causal discovery is a possible solution for this issue.

Pitfalls of Causal Detection. Although many statistical machine
learning models have been developed to enable automatic detection
of causal relations, it is still difficult to guarantee that every detected
causal relation is real and trustworthy. Here, we reflect on our studies
and discuss the critical pitfalls that may lead to incorrect and even
harmful causal detection results.

Confounding bias is an important pitfall that could impair the accu-
racy of causal detection. For example, given two independent variables
X and Y, if they are causally influenced by a third variable Z (con-
founder), a spurious association between X and Y will be observed.
F-GES can handle certain obvious confounders and remove the cor-
responding spurious associations from the causal graph, which is one
of the reasons why we used this model in our system. However, fully
addressing the confounding pitfall still remains a difficult problem,
especially when the confounders are not observed in the data.

Data quality is a general issue [35] in statistical analysis and also has
an impact on causal detection. For example, Berkson’s paradox [5] (i.e.,
two positively related or even unrelated dimensions being observed as
negatively related) is a phenomenon caused by data selection biases
and can lead to incorrect causal links. Recent experiments [48] suggest
that providing more data dimensions and more prior knowledge of the
relationships between dimensions can reduce incorrect causal links.
However, in many real-world scenarios, adding more data dimensions
leads to a smaller sample size, which will decrease the statistical power
of causal detection and lower the number of detected causal links.

Moreover, causal detection becomes more complex when temporal
dimensions are included. Many new issues are introduced that can lead
to incorrect causal links. For example, the sampling rate of the data
may not match the changing rate of the temporal dimension, the causal
relations may evolve and change dramatically over time, and lagged
causal effects may also exist.

Due to the aforementioned pitfalls, the performance of automated
causal detection cannot always be guaranteed. One promising solution
is to keep humans in the loop of causal analyses to review results
and make trade-offs for mitigating the pitfalls, or conduct controlled
experiments to eventually confirm the cause effects.

Limitations. We identified two limitations in our work. The first
limitation is the neglect of temporal variables. Variables in our cases are
all static. However, it is common to have temporal variables in domain
applications, such as users’ online clickstreams. One solution to support
temporal variables is to use a Dynamic Bayesian Network (DBN) [22],
where nodes could contain temporal information. We can therefore
adapt our approach to DBN by transforming the temporal nodes of
DBN to static nodes. However, there are many issues remained to be
addressed. For example, the causal links between temporal variables
and static variables should be distinguished by different encodings, the
uncertainty information of the temporal variables needs to be extracted,
and the design requirements for performing what-if analysis on tempo-
ral variables need to be gathered. We plan to address these challenges
and support temporal variables in our follow-up research.

The second limitation is about the integration of users’ domain
knowledge. In this study, the causal network is automatically detected.
Although this is useful for the causal analysis of high dimensional data,
users are still willing to have a solution for interactively adding their
self-defined causal links, re-computing the causal graph, and further
conducting what-if analysis with the new graph. This can fully utilize
users’ domain knowledge and create an efficient analytic loop, i.e.,
users obtain insights from the causal graph and in turn guide the graph
detection by feeding their insights. With the development of causal
detection models, we can address this limitation in the future.

8 CONCLUSION

In this work, we have identified the key challenges and user needs for
conducting exploratory causal analysis through interviews with 5 prac-
titioners. We have designed and implemented a visual analytics system
that features a scalable causal graph layout for causal exploration and
a set of user interactions for what-if analysis. We have conducted two
case studies with experts from education and marketing domains to
evaluate the usability and effectiveness of the system. The case studies
suggest that the system is easy to learn and use, the causal graph layout
is readable even when showing a large set of causal relations, and the
what-if analysis is useful for making action plans and estimating the
impact. In the future, we will extend our approach to support temporal
variables in causal analysis. We will also adapt our system workflow
to incorporate human knowledge into the causal discovery process. Fi-
nally, we plan to formally evaluate our uncertainty aware visualization
of causal relations through controlled user studies.
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